SymmeltricDS

SymmetricDS 2 User Guide

v2.0

Copyright © 2007 - 2010 Eric Long, Chris Henson, Mark Hanes

Permission to use, copy, modify, and distribute the SymmetricDS 2 User Guide Version 2.0 for any purpose and
without fee is hereby granted in perpetuity, provided that the above copyright notice and this paragraph appear
in all copies.

Table of Contents

= =0 2R TRR Vi
O g 1o [F o o o SRR 1
1.1 What 1S SYMMELNICDS? ...ttt st sa et b e e nns 1

1.2, BACKGIOUNG ...ttt sttt e st e b e et esne e e e e e e nns 1

1.3. SYMMELIICDS FEALUINESeeiueiiieieeieetee ettt sttt e b e e s ne e e e e neenns 2
1.3.1. NOtIfICAION SCNEMES ..ottt r e sb e e nns 2

1.3.2. Two-Way Table SynChroniZatioNccoceeeireeneniieseesie e 2

1.3.3. DA CANNELS ...t b e nns 2

1.3.4. TranSaCtiON AWEIENESScoveeiurrieeriereesieesteseesseessesseesseessesseessesssessesssesnsessesssesnsesses 3

1.3.5. Data Filtering and REIOULINGcceeruerirreeiieeiesee et 3

1.3.6. HTTP(S) TranSPOIT ...cveeeeiiiiiieeieetie ettt st s sb et sne e e nbe e e nns 3

1.3.7. ReMOte MaNAQEMENTeiieiiiiie ettt st r e e ae e e e sae e emne e 3

1.4, SySteM REQUITEIMENTSooiiiiiiierieeie ettt st st esseesae e s neeneeeneenns 4

1.5. What's new in SYMMELTICDS 2 ..ottt e 4

P2 o T a0 o g T I 1o = SRR 7
2.1, Installing SYMMELTICDS ..ot re e 8

2.2. Creating and Populating Y our DatabDaSeSccceveiierieeieneeniee e 9

2.3. Starting SYMMELIICDS ..ottt b et sae b neenreas 10

2.4. REQISLEITNG ANOUE ..ottt a e bt e seesaeebeeneenreas 11
2.5.Sending an INitial LOAAc.coeeiiriiiieeeie ettt s nne s 11

2.6. PUHTING DBLAeoveeiiriieiieeiesiie ettt sttt sbe et e s be b s esbe et e sneesaeenseeneenreas 11

2.7. PUSNING D@LAcovieieiiieieee st sttt sttt e b s e saeebeeneenreas 12

2.8. Verifying Outgoing BAICNEScoiiiiiiiicieeee et 12

2.9. Verifying INCOmMING BAICHES ..o 13

3. Planning an IMpPIementation ..o sre e s nne s 15
3.1, 1dentifYiNg NOGESooueeieeiiiee et e e s b et s sre b neeneeas 15

3.2. OrganiZING NOUEScoueeiiiiiieiieie ettt b et e et s se e b e et e e neesaeenseeneenreas 15

3.3. DEFINING NOUE GIOUPDSveiueeiieiesiesiiesieeeestee e ses st e ste s e sresssesseesseessesseesbesnsesseessessesseessens 18

34 LINKING NOGES ...ttt ettt s sb et e s e e sae e s e eneenreas 19

3.5. ChoosiNg Data ChanNElScooeiiiieiieesiie ettt ne e nneas 19

3.6. Defining Data Changes to be Captured and Routedcccooeiieiinienieieceseeecee s 20
GO I B L T o g To T I o = RSP 20

3.6.2. DEfINING ROULEN'Seiiiiiieiiesieeie ettt sa e sae b e nns 21

3.6.3. Planning INitial LOAOSccceeiiiiiiiieieeee et 22

3.7. Planning for RegIStEriNG NOUEScoiiiiiiieiecie et neeas 22

Z4 N @0 g1 1018 = 1 o o TSSO 23
7 I o0 [o 0] 0= g (=SSR 23

A Lo o L= PSP 24

G T Lo o LT €1 (o1 o ISP 25

v oo X €1 (010 o I | o] G PSR 25

T O =g = PSR 26

4.6. TriggerS aN0 ROULENScc.oiiiiiiiiiiisiie ettt st et re e ae et e sne e b e eneenns 26
I I I o SRR 26

4.6.2. ROULEY ...ttt ettt ettt ettt b e et e e s be e s e e e ebe e e aseeseesaneeabeeenseennnesnreenns 27

Symmetric DSv2.0

SymmetricDS 2 User Guide

4.6.2.1. DEfAUIT ROULESccueiiiiiirieeiee ettt 27

4.6.2.2. Column MatCh ROULEScoouiiiiiiiiieie et e 28

4.6.2.3. LOOKUP TabI@ ROULENceeeeiiiciiece et 30

4.6.2.4. REIAiONal ROULEScviiiiiieieeietee ettt 31

4.6.2.5. SCHPLed ROULEY ...ttt 32

4.7. OPeniNg REJISIIAIIONcccuiiieiiie i esie e esee st e s e e e be e sae s e be e saeeebeesreeanreesseeenreeans 33
A.8. INITTAI LOB ..ottt ettt sttt b et et b e b et e be et e e nas 33
I I T B I T o T RS PRR 34

4.9. Bi-Directional Synchronization ..o 35
4.10. Multi-Tiered SYNCArONIZALIONccueiieeiieiieeiee e e e sseeenre e 35
4.11. REQISLrAtioN REAITECTcveiieiiciie ettt re e s eenre e 36
O 2N o o SRS PRSP 36
4.13. Controlling SYNCAIrONIZALIONcc.eeiieiieeiieiie e see e s sbeesreeeseesseeenree e 38
Y o o I T [0 = (ST o] o SRR 38
4.15. IMS PUBITSNING ..o 39
I B L= o [0}/ 0 1= o | OSSPSR 42
SR B I= 1[0}/ 0 7010 @) o111 0] 0TSSR 42
5.1.1. WED ATCRIVE ...ttt et 42
5.1.2. SEANABIONE ...ttt b e as 43
5.1.3. EMDEAUEA ...ttt bbbt 43

5.2. RUNNING @S @WINAOWS SEIVICEveiiuieiiieiiecitie sttt ste st s s sae e s s sneeenne e 44
5.3. RUNNING @S @NIX SEIVICEoouviiciie ettt ettt sae e s be e b e seesseeenne e 45
o3 A O [1 oo SR 46
5.5. ENCIyPted PaSSWOITSccuiiiiiiiiicie ettt sttt et s te e e e sneeenne e 46
N IS = oW [T = o0 TSRS 46
5.6.1. SYM LAUNCREN ...oooiiiiecee ettt sne e e beenraeennas 47

I A 1 07 TSP 47
5.6.3. KKEYSIOIESeeieiiii ettt sttt e e nsa e e e bae e ebee e ebe e e enneeesnreeeenes 47
5.6.4. GENEIaliNG KEYSooiiiieciee ettt sttt e et e b e e e sne e e beenreennnas 48

5.7. BASIC AULNENTICALIONcouviiiiiiiiieiie ettt sttt st b et st sne b sne b 48
TR T o 11 (= 1 SR 49
5.8.1. CIDR FILEN .ottt bbbt na e e b e nns 49
5.8.2. LITEral FIITEr ..ottt 50
o3RS TR I VAV A1 o (o= [o OSSR 50
5.8.4. RANQE FIITEIS ...ovieiie ettt et sne e e be e nreeennas 50
5.8.5. INNEN WOIKINGS ..veevieeieeciie ettt e e sbe e s sseesseeenseenreeennas 51
5.8.6. CONFIQUIBLIONveevieiieeciee ettt et e ettt sse e e e e s se e e beesbeeenseesseeenseesneeannas 51

6. EXtending SYMMELIICDSoooiiiiiece e e e s e e be e sre e e beesneeensee e 53
6.1, IParamMELErFIILEreoeeee et nre s 53
6.2, IDABLOAEIFIITES ..ottt bbbt st sae b nre s 54
6.3. 1TaDIECOIUMNFIITES ...t nee s 55
B.4. IBAICHLISIENESeiieeieieieeee ettt sttt b e b b et st sae e b sne e b 55
6.5. [ACKNOWIEAGEEVENILISIENEY ...ttt 55
B.6. IREIOATLISIENEY ...ttt a e s b et st sae b sne e e 55
B.7. IEXITACLOIFIITEL ...ttt a et b e st ae b sae b 55
6.8. [SYNCUITEXIENSION ..ottt et e et e e n e e s e s beesbeeanseesseeenseenns 56
6.9. INOUEIAGENEIBLONceeeeiiieitieie ettt be et st b e bbb st sae e b eneenreas 56
6.10. ITriggerCreatiONLISIENESccccuieiieiieeitie ettt e e e s reesbe e enreesseeensee e 56
(O N =T ox o 72N o To 1 1 o o 1S 56

Symmetric DSv2.0

SymmetricDS 2 User Guide

B.12. IDELBROULEYcveieeitieieeie ettt sttt ettt st e s be et e se e s bt et s aeesbeebesaeesbeenbesneeneeas 56
6.13. THEAIDEALISIENEY ...t st nre s 56
6.14. [OFFHINECTIENELISIENES ..ottt sbe et neeas 56
6.15. [OfFHINESEIVEILISIENESeiieieiiiie ettt bbb e b e neenre s 56
6.16. INOAEPASSWOITFTITEN ..o 57
B.17. I SEIVIEIEXTENSION ..ottt sttt sttt ettt b e b st b e et st e saeebesneenreas 57
Ao 1011 g TES (= o] ISR 58
5 @ o= oo 11 e T T oo = £ TSR 58
7.2. Changing ConfiQUIaioNcccueiiiiiieciie e re e e e e sseeenre e 58
A< I oo o 170 W @o g1 { Lo U1 i o] o NS 58
7.4. JavaManagement EXTENSIONSccccoiiiiiiieiieciic ettt sne e enne e 58
AT = 10 Lo = YA o = SRS 59
FACRIDL: = 0= S Sl U o] oo SRR 59
A D= o U To o 1 g e T K 0TSSR 60
7.8. QUENYING FOF EXTOIS ..ottt ettt e e ne s e s sbe e beeenteenneeenree e 60
e I o D100 = o= TSRS 60
7.10. Measuring PErfOrMaNCEccuiiiiiiieeiie ettt sttt e e sseeense e 60
F N DT = 11, Lo [PSR PR 61
ALLINODE ...ttt b bt bt et ae e bt ae e naeeae e 62
A.2. NODE_SECURITY oottt st sttt sttt st a et be et e sae e 63
A 3. NODE _IDENTITY ittt st sttt st b e e se e bt sneesae e e 64
AL NODE_GROUP ..ottt sttt st b e bt b et s neesae e e 64
A.5. NODE_GROUP_LINK ..ottt sttt saeene e 64
ALB. NODE_HOST ..ottt b ettt b et b et e neesae e e 65
A.7.NODE_HOST _CHANNEL_STATS ..ottt 66
ALB. CHAINNEL ... ettt st e b et b et s e e sae e e e 67
A.9. NODE_CHANNEL _CTL ittt sttt st s sb e ae et saeene e 68
A.10. NODE_GROUP_CHANNEL_WINDOWcoiiiiiiieiisieteeie et 68
ALL TRIGGER ...ttt bttt sttt st b et s ne e ae e e 69
A L2, ROUTER ...ttt ettt sttt s he e bt et st sb et e st e s b e et e eneesae e e e 70
A.13. TRIGGER _ROUTER ..ottt st sttt s 71
A L4, PARAMETER ..ottt et sttt b et e sae e 72
A.15. REGISTRATION_REDIRECTooiiiiiiiiiiesieeie ettt st s 72
AL6. TRIGGER _HIST ..ottt e sttt sa e 73
N A N 1 SOOI 74
ALB. DATA _REF ..ttt sttt st b e bbbt sae e 75
AL DATA _GAP et ettt b et st b et ae e bt et ae e naeene e 75
A.20. DATA _EVENT ettt bttt e et b et ae e 76
A.21. OUTGOING BATCH ..ottt sttt st sae e 76
A.22. INCOMING _BATCH ..ttt ae e 78
N T I © X OSSPSR 79
B. PAraIMELENS ...ttt ettt e e b e ae e e et e e R e e e b e e e ae e e n e e nne e nareenneeennan 81
B.1. SIArtUP ParaMELErSceeeiiiiiiciiee ettt ae e s sbe e e sne e e nnnen s 81
B.2. RUNIIME PAr@MELENSooiiiiiiiiie ettt 84
C. DAt@DASE INOLES ...ttt sttt s e bt e bt et e et e s et e b e e e e e be e s beentesaeenbeenseeneenrean 88
O30 T @ = o [SRS RPRUPRSRURORR 88
O S @ SR RPRSPRSRPROR 89
C.3. POSIGIESQL ...ttt sttt b et et b e bbb nae e nae b eaeenreas 90
CA. M S SOQL SEIVED ...ttt sttt e bt et et e s be e bt s ae e s b e et e saeesaeebesneenbeas 91

Symmetric DSv2.0

SymmetricDS 2 User Guide

C.5. HSQLDB ...ttt sttt b et ae e s bt e b s ae e b e e b e s aeesae et e eneenreas 91
(3G o PSSR TPRSPRSRPRORN 91
O N oot o Tl I L 1 o) S 91
C.B.IBM DB2 ...ttt sttt h et et bt bt et b e bt nae et e e nre s 91
(O3S T T (= o 1 o SRR 92
(O30t (0 T a1 0] 0 01 SR 92
DI D= = 0 0= | USSR 94
E. Version NUMDENNG ...oooiiiie ettt ettt et re e b e e nse e enseenneeenns 96

Symmetric DSv2.0

Preface

SymmetricDS is an open-source, web-enabled, database independent, data synchronization software
application. It uses web and database technol ogies to replicate tables between relational databases in near
real time. The software was designed to scale for alarge number of databases, work across
low-bandwidth connections, and withstand periods of network outages.

This User Guide introduces SymmetricDS and its uses for data synchronization. It isintended for users
who want to be quickly familiarized with the software, configure it, and use its many features.

Symmetric DSv2.0

Vi

Chapter 1. Introduction

This User Guide will introduce both basic and advanced concepts in the configuration of SymmetricDS.
By the end of this chapter, you will have a better understanding of SymmetricDS' capabilities, and many
of its basic concepts.

1.1. What is SymmetricDS?

SymmetricDS is an asynchronous data replication software package that supports multiple subscribers
and bi-directional synchronization. It uses web and database technol ogies to replicate tables between
relational databases, in near real timeif desired. The software was designed to scale for alarge number of
databases, work across |ow-bandwidth connections, and withstand periods of network outage. The
software can be installed as a standal one process, as aweb application in a Java application server, or it
can be embedded into another Java application.

A singleinstallation of SymmetricDS attached to atarget database is called anode. A nodeisinitialized
by a propertiesfile and is configured by inserting configuration data into a series of database tables. It
then creates database triggers on the application tables to be synchronized so that database events are
captured for delivery to other SymmetricDS nodes.

In most databases, the transaction id is also captured by the database triggers so that the insert, update,
and delete events can be replicated transactionally viathe transport layer to other nodes. The transport
layer istypically a CSV protocol over HTTP or HTTPS.

SymmetricDS supports synchronization across different database platforms through the concept of
Database Dialects. A Database Dialect is an abstraction layer that SymmetricDS interacts with to
insulated the main synchronization logic from database-specific implementation details.

SymmetricDS is extendable through extension points. Extension points are custom, reusable Java code
that are configured via XML. Extension points hook into key pointsin the life-cycle of a synchronization
to allow custom behavior to be injected. Extension points allow custom behavior such as: publishing data
to other sources, transforming data, and taking different actions based on the content or status of a
synchronization.

1.2. Background

The idea of SymmetricDS was born from areal-word need. Several of the original developers were,
severa years ago, implementing a commercial Point of Sale (POS) system for alarge retailer. The
development team came to the conclusion that that the software available for trickling back transactions
to corporate headquarters (frequently known as the 'central office' or 'general office') did not meet the
project needs. The list of project requirements made finding the ideal solution difficult:

» Sending and receiving data with up to 2000 stores during peak holiday loads.

» Supporting one database platform at the store and a different one at the central office.

Symmetric DSv2.0 1

Introduction

» Synchronizing some data in one direction, and other data in both directions.
 Filtering out sensitive data and re-routing it to a protected database.

* Preparing the store database with an initial load of data from the central office.

The team ultimately created a custom solution that met the requirements and led to a successful project.
From this work came the knowledge and experience that SymmetricDS benefits from today.

1.3. SymmetricDS Features

At ahigh level, SymmetricDS comes with a number of features that you are likely to need or want when
doing data synchronization. A majority of these features were created as a direct result of real-world use
of SymmetricDS in production settings.

1.3.1. Notification Schemes

After a change to the database is recorded, the SymmetricDS nodes interested in the change are notified.
Change natification is configured to perform either a push (trickle-back) or a pull (trickle-poll) of data.
When several nodes target their changes to a central node, it is efficient to push the changes instead of
waiting for the central node to pull from each source node. If the network configuration protects a node
with afirewall, apull configuration could allow the node to receive data changes that might otherwise be
blocked using push. The frequency of the change notification is configurable and defaults to once per
minute.

1.3.2. Two-Way Table Synchronization

In practice, much of the datain atypical synchronization requires synchronization in just one direction.
For example, aretail store sendsits sales transactions to a central office, and the central office sendsits
stock items and pricing to the store. Other data may synchronize in both directions. For example, the
retail store sends the central office an inventory document, and the central office updates the document
status, which is then sent back to the store. SymmetricDS supports bi-directional or two-way table
synchronization and avoids getting into update |loops by only recording data changes outside of
synchronization.

1.3.3. Data Channels

SymmetricDS supports the concept of channels of data. Data synchronization is defined at the table (or
table subset) level, and each managed table can be assigned to a channel that helps control the flow of
data. A channel isa category of datathat can be enabled, prioritized and synchronized independently of
other channels. For example, in aretail environment, users may be waiting for inventory documentsto
update while a promotional sale event updates a large number of items. If processed in order, the item
updates would delay the inventory updates even though the datais unrelated. By assigning changes to the
item tables to an item channel and inventory tables' changes to an inventory channel, the changes are

Symmetric DSv2.0 2

Introduction

processed independently so inventory can get through despite the large amount of item data.
Channels are discussed in more detail in Section 3.5, Choosing Data Channels (p. 19).

1.3.4. Transaction Awareness

Many databases provide a unique transaction identifier associated with the rows that are committed
together as atransaction. SymmetricDS stores the transaction identifier, along with the data that changed,
so it can play back the transaction exactly asit occurred originally. This means the target database
maintai ns the same transactional integrity asits source. Support for transaction identification for
supported databases is documented in the appendix of this guide.

1.3.5. Data Filtering and Rerouting

Using SymmetricDS, data can befiltered asit is recorded, extracted, and |oaded.

» Datarouting is accomplished by assigning arouter type to aROUTER configuration. Routers are
responsible for identifying what target nodes captured changes should be delivered to. Custom
routers are possible by providing a class implementing | pat aRout er .

» Asdata changes are loaded in the target database, a class implementing | Datal_oaderFilter can
change the datain a column or route it somewhere else. One possible use might be to route credit
card data to a secure database and blank it out asit loads into a centralized sales database. The filter
can also prevent data from reaching the database altogether, effectively replacing the default data
loading process.

» Columns can be excluded from synchronization so they are never recorded when the tableis
changed. As data changes are |oaded into the target database, a classimplementing 1 col unmFi I ter
can remove a column altogether from the synchronization. For example, an employee table may be
synchronized to aretail store database, but the employee's password is only synchronized on the
initial insert.

» Asdata changes are extracted from the source database, a class implementing the
| Ext ract or Li st ener interfaceiscalled to filter data or route it somewhere else. By defaullt,
SymmetricDS provides a handler that transforms and streams data as CSV. Optionally, an alternate
implementation may be provided to take some other action on the extracted data.

1.3.6. HTTP(S) Transport
By default, SymmetricDS uses web-based HTTP or HTTPS in a style called Representation State
Transfer (REST). It islightweight and easy to manage. A series of filters are also provided to enforce

authentication and to restrict the number of simultaneous synchronization streams. The | Tr anspor t Manager
interface alows other transports to be implemented.

1.3.7. Remote Management

Administration functions are exposed through Java Management Extensions (JM X) and can be accessed

Symmetric DSv2.0 3

Introduction

from the Java JConsole or through an application server. Functions include opening registration,
reloading data, purging old data, and viewing batches. A number of configuration and runtime properties
are available to be viewed as well.

SymmetricDS aso provides functionality to send SQL events through the same synchronization
mechanism that is used to send data. The data payload can be any SQL statement. The event is processed
and acknowledged just like any other event type.

1.4. System Requirements

SymmetricDS is written in Java 5 and requires a Java SE Runtime Environment (JRE) or Java SE
Development Kit (JDK) version 5.0 or above.

Any database with trigger technology and a JDBC driver has the potential to run SymmetricDS. The
database is abstracted through a Database Dialect in order to support specific features of each database.
The following Database Dialects have been included with this release:

* MySQL version 5.0.2 and above

* Oracleversion 8.1.7 and above
 PostgreSQL version 8.2.5 and above
 Sqgl Server 2005

« HSQLDB 1.8

e H21x

» Apache Derby 10.3.2.1 and above
 |IBM DB295

Firebird 2.0 and above

See Appendix C, Database Notes (p. 88), for compatibility notes and other details for your specific
database.

1.5. What's new in SymmetricDS 2

SymmetricDS 2 builds upon the existing SymmetricDS 1.x software base and incorporates a number of
architectural changes and performance improvements. If you are brand new to SymmetricDS, you can
safely skip this section. If you have used SymmetricDS 1.x in the past, this section summarizes the key
differences you will encounter when moving to SymmetricDS 2.

The first significant architectural change involves SymmetricDS's use of triggers. In 1.x, triggers capture
and record data changes as well as the nodes to which the changes must be applied as row inserts into the

Symmetric DSv2.0 4

Introduction

DATA_EVENT table. Thus, the number of row-inserts grows linearly with the number of client nodes.
This can lead to an obvious performance issue as the number of nodes increases. In addition, the problem
is made worse at times due to synchronizing nodes updating the sasme DATA _EVENT table as part of the
batching process while the row-inserts are being created.

In SymmetricDS 2, triggers capture only data changes, not the node-specific details. The node-specific
row-inserts are replaced with a new routing mechanism that does both the routing and the batching of
data on one thread. Thus, the real-time insertsinto DATA_EVENT by applications using synchronized
tables have been eliminated, and database performance is therefore improved. The database contention on
DATA_EVENT has aso been eliminated, since the router job is the only thread inserting data into that
table. The only other accessto the DATA_EVENT tableis from selects by synchronizing nodes.

As aresult of these changes, we gain the following benefits:

» Synchronizing client nodes will spend less time connected to a server node,

» Applications updating database tables that are being synchronized to alarge number of nodes will
not degrade in performance as more nodes are added, and

» There should be almost no database contention on the dat a_event table, unlike the possible
contention in 1.X.

Because routing no longer takes place in the SymmetricDS database triggers, a new mechanism for
routing was needed. In SymmetricDS 1.X, the node_sel ect expression was used for specifying the desired
datarouting. It was a SQL expression that qualified theinsert into DATA_EVENT from the
SymmetricDS triggers. In SymmetricDS 2 there is a new extension point called the datarouter. Data
routers are configured in the router table with arout er _t ype and arout er _expressi on. Several different
routers have been provided to serve the majority of users routing needs, but the framework isin place for
a SymmetricDS programmer to develop domain- or application-specific routers. See Section 4.6.2, Router
(p. 27) for acomplete list of provided routers.

Since the routing and capturing of data are now performed with two separate mechanisms, the two
concepts have been separated into separate configuration tables in the database, with ajoin table
(TRIGGER_ROUTER) specifying the relationships between routing (ROUTER) and capturing of data
(TRIGGER). This solves along standing issue with some databases which only allow one trigger per
table. On those database platforms, we can now route data in multiple directions since we only require
one SymmetricDS trigger to capture data. This also helps performance in those scenarios, since we only
capture the data once instead of once per routing instance.

As part of the new routing job, we have introduced another new extension point to allow more flexibility
in the way data events get batched. A batch isthe unit by with captured datais sent and committed on
target nodes. In SymmetricDS 2, batching is now configured on the channel configuration table. This
provides additional flexibility for batching:

» Batching can have the traditional SymmetricDS 1.x behavior of batching up to a max batch size,
but never breaking on a database transaction boundary.

» Batching can be completely tied to a database transaction. One batch per database transaction.

» Batching can ignore database transactions altogether and always batch based on a max batch size.

Symmetric DSv2.0 5

Introduction

Another significant change to note in SymmetricDS 2 is the removal of the incoming and outgoing batch
history tables. This change was made because it was found that over 95% of the time the statistics the end
user truly wanted to see were those for the most recent synchronization attempt, not to mention that the
outgoing batch history table was difficult to query. The most valuable information in the batch history
tables, the batch statistics, have been moved over to the batch tables themselves. The stetisticsin the
batch tables now always represent the latest synchronization attempt.

Symmetric DSv2.0 6

Chapter 2. Hands-on Tutorial

Now that several of the features of SymmetricDS have been discussed, a quick working example of
SymmetricDSisin order. This section contains a hands-on tutorial that demonstrates how to synchronize
a sampl e database between two running instances of SymmetricDS. This example models aretail
business that has a central office database (called "root") and multiple retail store databases (called
"“client"). For the tutorial, we will have only one "client", as shown in Figure 2.1.

—— STORE — — CORP

:l |$:I_I: AR REEEREEERREE
A
Retail Store Central Office Central Office (CO)
SymmetricDS Instance SymmetricDS Instance Database
"Client" "Root"

ssssansnnannns JDBC
HTTP(S)

Figure 2.1. Simplified Two Tiered Retail Store Tutorial Example

The root SymmetricDS instance sends changes to the client for item data, such asitem number,
description, and price. The client SymmetricDS sends changes to the root for sale transaction data, such
astime of sale and items sold. The sample configuration specifies synchronization with a pull method for
the client to receive data from root, and a push method for the root to receive data from client.

Thistutorial will walk you through:
1. Instaling instances of SymmetricDS for the tutorial,

2. Creating separate databases for the root and client,

3. Creating sample tablesfor client and root and sample datafor the root,

Symmetric DSv2.0 7

Hands-on Tutorial

4. Starting SymmetricDS and registering the client with the root,
5. Sending aninitial load to the client,
6. Causing adata push and data pull operation, and

7. Verifying information about the batches that were sent and received.

2.1. Installing SymmetricDS

First, we will install the SymmetricDS software and configure it with your database connection
information:

1. Download the symmetric-ds-2.x.x.zip file from http://www.symmetricds.org/

2. Unzip thefilein any directory you choose. Thiswill create asymetri c-ds- 2. x. x subdirectory,
which corresponds to the version you downloaded.

3. Edit the database properties in the following property files for the root (central office) and client
(store) nodes:

® sanpl es/root. properties
® sanples/client.properties

4. Set thefollowing propertiesin both files to specify how to connect to the database:

The class name for the JDBC Driver
db. dri ver=com nysql . jdbc. Dri ver

The JDBC URL used to connect to the database
db. url =j dbc: mysql : / /1 ocal host/ sanpl e

The user to login as who can create and update tables
db. user=symmetric

The password for the user to |login as
db. passwor d=secr et

5. Next, set the following property intheciient. properties file to specify where the root node can
be contacted:

The HTTP URL of the root node to contact for registration
registration.url=http://1ocal host: 8080/ sync

For the tutorial, the client database starts out empty, and the node is not registered. Registration
is the process where the node receives its configuration and stores it in its database. The
configuration describes which database tables to synchronize and to which nodes. When an
unregistered node starts up, it will register with the node specified by the registration URL. The

Symmetric DSv2.0 8

https://sourceforge.net/projects/symmetricds/files/
http://www.symmetricds.org/

Hands-on Tutorial

registration node centrally controls nodes on the network by allowing registration and returning
configuration. In thistutorial, the registration node is the root node, which also participatesin
synchronization with other nodes.

2.2. Creating and Populating Your Databases

f | mportant

Y ou must first create the databases for your root and client nodes using the administration
tools provided by your database vendor. Make sure the name of the databases you create
match the settings in the properties files.

See Appendix C, Database Notes (p. 88), for compatibility with your specific database.

First, create the sample tables in the root node database, |oad the sample data, and load the sample
configuration.

1. Open acommand prompt and navigate to the sanpl es subdirectory of your SymmetricDS
installation.

2. Create the sample tablesin the root database by executing the following command:
..[bin/sym -p root.properties--run-ddl create_samplexml
Note that the warning messages from the command are safe to ignore.

3. Next, create the SymmetricDS tables in the root node database. These tables will contain the
configuration for synchronization. The following command uses the auto-creation feature to
create all the necessary SymmetricDS system tables.

./bin/sym -p root.properties --auto-cr eate
4. Finaly, load the sample data and configuration into the root node database by executing:

.Ibin/sym -p root.properties --run-sgl insert_sample.sgl

We have now created the root database tables and populated them with sample data. Next, we create the
sampletablesin the client node database to prepare it for receiving data.

1. Open acommand prompt and navigate to the sanpl es subdirectory of your SymmetricDS
installation.

2. Create the sample tablesin the client database by executing:

..[bin/sym -p client.properties--run-ddl create_samplexml

Symmetric DSv2.0

Hands-on Tutorial

Note that the warning messages from the command are safe to ignore.

Please verify both databases by logging in and listing the tables.
1. Findtheitem tables that sync from root to client: item and item_selling_price.

2. Find the sales tables that sync from client to root: sale_transaction and sale_return_line_item.

3. Find the SymmetricDS system tables, which have a prefix of "sym

4. Validate the root item tables have sample data.

2.3. Starting SymmetricDS

Database setup and configuration for the tutorial is now complete. Time to put SymmetricDS into action.
We will now start both SymmetricDS nodes and observe the logging output.

1. Open acommand prompt and navigate to the sanpl es subdirectory of your SymmetricDS
installation.

2. Start the root node server by executing:
.[bin/sym -p root.properties--port 8080 --ser ver

The root node server starts up and creates all the triggers that were configured by the sample
configuration. It listens on port 8080 for synchronization and registration requests.

3. Start the client node server by executing:
..Ibin/sym -p client.properties--port 9090 --ser ver

The client node server starts up and uses the auto-creation feature to create the SymmetricDS
system tables. It begins polling the root node in order to register. Since registration is not yet
open, the client node receives an authorization failure (HT TP response of 403).

Tip

If you want to change the port number used by SymmetricDS, you need to also set the sync.url
runtime property to match. The default valueis:

sync. url =http://1 ocal host: 8080/ sync

Symmetric DSv2.0 10

Hands-on Tutorial

2.4. Registering a Node

Next, we need to open registration for the client node so that it may receiveitsinitial load of dataand so
that it may receive and send data from and to the root node. There are several ways to do this. We will use
the administration feature on the root node.

1

Open a command prompt and navigate to the sanpl es subdirectory of your SymmetricDS
installation.

Open registration for the client node server by executing:
..[bin/sym -p root.properties--open-registration " store,1"

The registration is now opened for anode group called "store" with an external identifier of "1".
This information matches the settingsin cii ent . properti es for the client node. Each nodeis
assigned to anode group and is given an external ID that makes sense for the application. In this
tutorial, we have retail stores that run SymmetricDS, so we named our node group "store" and
we used numeric identifiers starting with "1". More information about node groups will be
covered in the next chapter.

Watch the logging output of the client node to see it successfully register with the root node. The
client is configured to attempt registration once per minute. Once registered, the root and client
are enabled for synchronization!

2.5. Sending an Initial Load

Next, we will send an initial load of datato our store (that is, the client node), again using the root node
administration feature.

1

Open a command prompt and navigate to the sanpl es subdirectory of your SymmetricDS
installation.

Send aninitial load of datato the client node server by executing:
..Ibin/sym -p root.properties--reload-node 1

With this command, the root node queues up an initial load for the client node that will be sent
the next time the client performsits pull. Theinitial load includes datafor each table that is
configured for synchronization.

Watch the logging output of both nodes to see the data transfer. The client is configured to pull
data from the root every minute.

2.6. Pulling Data

Symmetric DSv2.0 11

Hands-on Tutorial

Next, we will make a change to the item data in the central office (we'll add a new item), and observe the
data being pulled down to the store.

1

2.

Open an interactive SQL session with the root database.

Add anew item for sale:

insert into item_selling_price (price_id, price) values (55, 0.65);

insert into item (item_id, price_id, name) values (110000055, 55, ' Soft Drink");

Once the statements are committed, the data change is captured by SymmetricDS and queued for
the client node to pull.

Watch the logging output of both nodes to see the data transfer. The client is configured to pull
datafrom the root every minute.

Verify that the new data arrivesin the client database using another interactive SQL session.

2.7. Pushing Data

We will now simulate a sale at the store and observe how SymmetricDS pushes the sale transaction to the
central office.

1

2.

Open an interactive SQL session with the client database.
Add anew saleto the client database:

insert into sale_transaction (tran_id, store, workstation, day, seq) values (1000, '1', '3,
'2007-11-01', 100);

insert into sale return_line_item (tran_id, item_id, price, quantity) values (1000,
110000055, 0.65, 1);

Once the statements are committed, the data change is captured and queued for the client node to
push.

Watch the logging output of both nodes to see the data transfer. The client is configured to push
data to the root every minute.

2.8. Verifying Outgoing Batches

Now that we have pushed and pulled data, we will demonstrate how you can obtain information about
what data has been batched and sent. A batch is used for tracking and sending data changes to nodes. The
sending node creates a batch and the receiving node acknowledgesit. A batch in error isretried during
synchronization attempts, but only after data changes in other channels are allowed to be sent. Channels

Symmetric DSv2.0 12

Hands-on Tutorial

are categories assigned to tables for the purpose of independent synchronization and control. Batches for
achannel are not created when abatch in the channel isin error status.

1

2.

Open an interactive SQL session with either the root or client database.
Verify that the data change you made was captured:

select * from sym_data order by data _id desc;

Each row represents arow of datathat was changed. The event_typeis"I" for insert, "U" for
update”, or "D" for delete. For insert and update, the captured data values are listed in row_data.
For update and del ete, the primary key values are listed in pk_data.

Verify that the data change was routed to a node, using the data_id from the previous step:
select * from sym_data_event wheredata id = ?;

When the batched flag is set, the data change is assigned to a batch using a batch _id that is used
to track and synchronize the data. Batches are created and assigned during a push or pull
synchronization.

Verify that the data change was batched, sent, and acknowledged, using the batch_id from the
previous step:

select * from sym_outgoing_batch where batch_id = ?;

A batch represents a collection of changesto be sent to anode. The batch is created during a
push or pull synchronization, when the statusis set to "NE" for new. The receiving node
acknowledges the batch with a status of "OK" for success or "ER" for error.

Understanding these three tables, along with a fourth table discussed in the next section, is key to
diagnosing any synchronizaiton issues you might encounter. As you work with SymmetricDS, either
when experimenting or starting to use SymmetricDS on your own data, spend time monitoring these
tables to better understand how SymmetricDS works.

2.9. Verifying Incoming Batches

The receiving node keeps track of the batches it acknowledges and records statistics about |oading the
data. Duplicate batches are skipped by default, but this behavior can be changed with the
i nconi ng. bat ches. ski p. dupl i cat es runtime property.

1

2.

Open an interactive SQL session with either the root or client database.
Verify that the batch was acknowledged, using a batch_id from the previous section:
select * from sym_incoming_batch where batch_id = ?;

A batch represents a collection of changes loaded by the node. The sending node that created the
batch is recorded. The statusis either "OK" for success or "ER" for error.

Symmetric DSv2.0 13

Hands-on Tutorial

Symmetric DSv2.0

14

Chapter 3. Planning an Implementation

In the previous Chapter we presented a high level introduction to some basic conceptsin SymmetricDS,
some of the high-level features, and atutorial demonstrating a basic, working example of SymmetricDS
in action. This chapter will focus on the key considerations and decisions one must make when planning a
SymmetricDS implementation. As needed, basic concepts will be reviewed or introduced throughout this
Chapter. By the end of the chapter you should be able to proceed forward and implement your planned
design. This Chapter will intentionally avoid discussing the underlying database tables that capture the
configuration resulting from your analysis and design process. Implementation of your design, along with
discussion of the tables backing each concept, is covered in Chapter 4, Configuration (p. 23).

When needed, we will rely on an example of atypical use of SymmetricDS in retail situations. This
example retail deployment of SymmetricDS might include many point-of-sale workstations located at
stores that may have intermittent network connection to a central location. These workstations might have
point-sale-software that uses alocal relational database. The database is populated with items, prices and
tax information from a centralized database. The point-of-sale software |ooks up item information from
the local database and also saves sale information to the same database. The persisted sales need to be
propagated back to the centralized database.

3.1. Identifying Nodes

A nodeisasingle instance of SymmetricDS. It can be thought of as a proxy for a database which
manages the synchronization of datato and/or from its database. For our example retail application, the
following would be SymmetricDS nodes:

 Each point-of-sale workstation.

» The central office database server.

Each node of SymmetricDS can be either embedded in another application, run stand-alone, or even run
in the background as a service. If desired, nodes can be clustered to help disperse load if they send and/or
receive large volumes of datato or from alarge number of nodes.

Individual nodes are easy to identify when planning your implementation. If a database existsin your
domain that needs to send or receive data, there needs to be a corresponding SymmetricDS instance (a
node) responsible for managing the synchronization for that database.

3.2. Organizing Nodes

Nodesin SymmetricDS are organized into an overall node network, with connections based on what data
needs to be synchronized where. The exact organization of your nodes will be very specific to your
synchronization goals. As a starting point, lay out your nodes in diagram form and draw connections
between nodes to represent cases in which datais to flow in some manner. Think in terms of what datais
needed at which node, what dataisin common to more than one node, etc. If it is helpful, you could aso
show data flow into and out of external systems. Asyou will discover later, SymmetricDS can publish
data changes from anode aswell using IMS.

Symmetric DSv2.0 15

Planning an Implementation

Our retail example, as shown in Figure 3.1, represents atree hierarchy with asingle central office node
connected by lines to one or more children nodes (the POS workstations). Information flows from the
central office node to an individual register and vice versa, but never flows between registers.

— STORE — _ CORP

—1

B— TTT]

(S| EECECCE TR]

Stateless

Store Corporata Load Balancer A,
Ragistar Firewall Flrewall Cantral Offica Central Office {CO)
Sarvers) Databass

HTTR{S)

Register

Figure 3.1. Two Tiered Retail Store Deployment Example

More complex organization can aso be used. Consider, for example, if the same retail exampleis
expanded to include store serversin each store to perform tasks such as opening the store for the day,
reconciling registers, assigning employees, etc. One approach to this new configuration would be to
create athree-tier hierarchy (see Figure 3.2). The highest tier, the centralized database, connects with
each store server's database. The store servers, in turn, communicate with the individual point-of-sale
workstations at the store. In this way data from each register could be accumulated at the store server,
then sent on to the central office. Similarly, data from the central office can be staged in the store server
and then sent on to each register, filtering the register's data based on which register it is.

Symmetric DSv2.0

16

Planning an Implementation

STORE — CORP

Store
Firewall

Store #0101
Server

:‘
REQEET EEEEEEEN = S
Slaleless [| | | ||
Corporate Load Balancer
Flrewal Central Offica Central Office (CO)
Databasa
Server(s)
D02-01 E
| || - JOBGC
HTTR(S)
Slore
— Store #002 Firewall
| || Server
Register

D0z-02

Figure3.2. Three Tiered, In-Store Server, Retail Store Deployment Example

Onefina example, show in Figure 3.3, again extending our original two-tier retail use case, would be to
organize stores by "region” in the world. This three tier architecture would introduce new regional servers
(and corresponding regional databases) which would consolidate information specific to stores the
regional server isresponsible for. Thetiersin this case are therefore the central office server, regional
servers, and individual store registers.

Symmetric DSv2.0 17

Planning an Implementation

—— STORE —— CORP

= "-.'I.@
E E Reglon #01
| 'm'l | Database

Register
DO1-02

Region 701
Slakrhass Sarverns)
Load Balarcer
:‘
EEEmEEER T
|| s |
Slaheless F | | | | |
Slearer Corperiah: Load Balancer A
Frewsl Firewsl Coexnlral OMice: Canral Ofice (CO]
EEEEEEES Daksbasa
Semnvers)
Stafeless
Load Balancer
F .-"'-.__
Region #02
Saners)
Ragion #02
Database
Stone
Firewall [EPRRPRRRN | - |»
HTTP[S)

Reglster
Qo302

Figure3.3. Three Tiered, Regional Server, Retail Store Deployment Example

These are just three common examples of how one might organize nodes in SymmetricDS. While the

examples above were for the retail industry, the organization, they could apply to a variety of application
domains.

3.3. Defining Node Groups

Once the organization of your SymmetricDS nodes has been chosen, you will need to group your nodes
based on which nodes share common functionality. Thisis accomplished in SymmetricDS through the
concept of a Node Group. Frequently, an individual tier in your network will represent one Node Group.
Much of SymmetricDS functionality is specified by Node Group and not an individual node. For

Symmetric DSv2.0 18

Planning an Implementation

example, when it comes time to decide where to route data captured by SymmetricDS, the routing is
configured by Node Group.

For the examples above, we might define Node Groups of:

» "workstation", to represent each point-of-sale workstation
» "corp" or "central-office" to represent the centralized node.

» "store" to represent the store server that interacts with store workstations and sends and receives
data from a central office server.

» "region" to represent the aregional server that interacts with store workstations and sends and
receives data from a central office server.

Considerable thought should be given to how you define the Node Groups. Groups should be created for
each set of nodes that synchronize common tables in asimilar manner. Also, give your Node Groups
meaningful names, as they will appear in many, many places in your implementation of SymmetricDS.

Note that there are other mechanismsin SymmetricDS to route to individual nodes or smaller subsets of
nodes within aNode Group, so do not choose Node Groups based on needing only subsets of data at
specific nodes. For example, athough you could, you would not want to create a Node Group for each
store even though different tax rates need to be routed to each store. Each store needs to synchronize the
same tables to the same groups, so 'store’ would be a good choice for a Node Group.

3.4. Linking Nodes

Now that Node Groups have been chosen, the next step in planning is to document the individual links
between Node Groups. These Node Group Links establish a source Node Group, atarget Node Group,
and a data event action, namely whether the data changes are pushed or pulled. The push method causes
the source Node Group to connect to the target, while a pull method causes it to wait for the target to
connect to it.

For our retail store example, there are two Node Group Links defined. For the first link, the "store” Node
Group pushes data to the "corp” central office Node Group. The second defines a"corp" to "store" link as
apull. Thus, the store nodes will periodically pull data from the central office, but when it comes time to
send data to the central office a store node will do a push.

3.5. Choosing Data Channels

When SymmetricDS captures data changes in the database, the changes are captured in the order in which
they occur. In addition, that order is preserved when synchronizing the data to other nodes. Frequently,
however, you will have cases where you have different "types' of datawith differing priorities. Some
data might, for example, need priority for synchronization despite the normal order of events. For
example, in aretail environment, users may be waiting for inventory documents to update while a
promotional sale event updates alarge number of items.

SymmetricDS supports this by allowing tables being synchronized to be grouped together into Channels

Symmetric DSv2.0 19

Planning an Implementation

of data. A number of controls to the synchronization behavior of SymmetricDS are controlled at the
Channel level. For example, Channels provide a processing order when synchronizing, alimit on the
amount of datathat will be batched together, and isolation from errors in other channels. By categorizing
datainto channels and assigning them to TRIGGERS, the user gains more control and visibility into the
flow of data. In addition, SymmetricDS allows for synchronization to be enabled, suspended, or
scheduled by Channels as well. The frequency of synchronization can also be controlled at the channel
level.

Choosing Channelsisfairly straightforward and can be changed over time, if needed. Think about the
differing "types' of data present in your application, the volume of datain the various types, etc. What
datais considered must-have and can't be delayed due to a high volume load of another type of data? For
example, you might place employee-related data, such as clocking in or out, on one channel, but sales
transactions on another. We will define which tables belong to which channelsin the next sections.

f I mportant
Be sure that, when defining Channels, al tables related by foreign keys are included in the
same channel.

3.6. Defining Data Changes to be Captured and Routed

At this point, you have designed the node-related aspects of your implementation, namely choosing
nodes, grouping the nodes based on functionality, defining which node groups send and receive data to
which others (and by what method). Y ou have defined data Channels based on the types and priority of
data being synchronized. The largest remaining task prior to starting your implementation is to define and
document what data changes are to be captured (by defining SymmetricDS Triggers), and to decide to
which node(s) the data changes are to be routed to and under what conditions. We will aso, in this
section, discuss the concept of an initial load of datainto a SymmetricDS node.

3.6.1. Defining Triggers

SymmetricDS uses database triggers to capture and record changes to be synchronized to other nodes.
Based on the configuration you provide, SymmetricDS creates the needed database triggers automatically
for you. Thereisagreat deal of flexibility in terms of defining the exact conditions under which a data
changeis captured. Each trigger you define has a corresponding table associated with it. In addition, each
trigger can specify:

» whether to install atrigger for updates, inserts, and/or deletes
« conditions on which an insert, update, and/or delete fires
* alist of columns that should not be synchronized from thistable

» aSQL select statement that can be used to hold data needed for routing (known as External Data)

Asyou define your triggers, consider which data changes are relevant to your application and which ones

Symmetric DSv2.0 20

Planning an Implementation

ar not. Consider under what special conditions you might want to route data, as well. For our retail
example, we likely want to have triggers defined for updating, inserting, and deleting pricing information
in the central office so that the data can be routed down to the stores. Similarly, we need triggers on sales
transaction tables such that sales information can be sent back to the central office.

3.6.2. Defining Routers

The triggers that have been defined in the previous section only define whendata changes are to be
captured for synchronization. They do not define where the data changes are to be sent to. Routers, plus a
mapping between Triggers and Routers, define the process for determining which nodes receive the data
changes.

Before we discuss Routers and Trigger Routers, we should probably take a break and discuss the process
SymmetricDS uses to keep track of the changes and routing. As we stated, SymmetricDS relies on
auto-created database triggers to capture and record relevant data changes into atable, the DATA table.
After the datais captured, a background process chooses the nodes that the data will be synchronized to.
Thisiscalled routing and it is performed by the Routing Job. Note that the Routing Job does not actually
send any data. It just organizes and records the decisions on where to send datain a "staging" table called
DATA_EVENT and OUTGOING_BATCH.

Now we are ready to discuss Routers. The router itself iswhat defines the configuration of where to send
adata change. Each Router you define can be associated with or assigned to any number of Triggers
through ajoin table that defines the relationship. For each router you define, you will need to specify:

the target table on the destination node to route the data
* the source node group and target node group for the nodes to route the data to

 arouter type and router expression

whether to route updates, inserts, and/or deletes

For now, do not worry about the specific routing types. They will be covered later. For your design
simply make notes of the information needed and decisions to determine the list of nodes to route to. Y ou
will find later that there isincredible flexibility and functionality available in routers. For example, you
will find you can:

» send the changes to al nodes that belong to the target node group defined in the router.
» compare old or new column values to a constant value or the value of a node's identity.

» execute a SQL expression against the database to select nodes to route to. This SQL expression can
be passed values of old and new column values.

* execute aBean Shell expression in order to select nodes to route to. The Bean Shell expression can
use the the old and new column values.

* publish data changes directly to a messaging solution instead of transmitting changes to registered
nodes. (This router must be configured manually in XML as an extension point.)

Symmetric DSv2.0 21

Planning an Implementation

For each of your Triggers, decide which Router matches the behavior needed for that Trigger. These
Trigger Router combinations will be used to define a mapping between your Triggers and Routers when
you implement your design.

3.6.3. Planning Initial Loads

The mapping between Triggers and Routers defines more than just the many-to-many relationship
between your Triggers and your Routers. It also defines how initial loads can occur, so now is agood
time to plan how your Initial Loads will work. SymmetricDS provides the ability to "load" or "seed" a
nodes database with specific sets of data from its parent node. This concept is known as an Initial Load of
data and is used to start off most synchronization scenarios. Using our retail example, consider a new
store being opened. Initially, you would like to pre-populate a store database with all the item, pricing,
and tax data for that specific store. Thisis achieved through an initial load.

When anode connects and data is extracted, after it isregistered and if aninitial load was requested, each
table that is configured to synchronize to the target node group will be given areload event in the order
defined by the end user. A SQL statement is run against each table to get the dataload that will be
streamed to the target node. The selected datais filtered through the configured router for the table being
loaded. If the data set is going to be large, then SQL criteria can optionally be provided to pair down the
data that is selected out of the database.

3.7. Planning for Registering Nodes

Our final step in planning an implementation of SymmetricDS involves deciding how anew nodeis
connected to, or registered with a parent node for the first time.

The following are some options on ways you might register nodes.

» Thetutoria usesthe command line utility to register each individual node.

* A JMX interface provides the same interface that the command line utility does. IMX can be
invoked programatically or viaaweb console.

 Both the utility and the IMX method register a node by inserting into two tables. A script can be
written to directly register nodes by directly inserting into the database.

* SymmetricDS can be configured to auto register nodes. This means that any node that asks for a
registration will be given one.

Symmetric DSv2.0 22

Chapter 4. Configuration

Chapter 3 introduced numerous concepts and the analysis and design needed to create an implementation
of SymmetricDS. This chapter re-visits each analysis step and documents how to turn a SymmetricDS
design into reality through configuration of the various SymmetricDS tables. In addition, severad
advanced configuration options, not presented previously, will also be covered.

4.1. Node Properties

To get a SymmetricDS node running, it needsto be given an identity and it needs to know how to connect
to the database it will be synchronizing. A typical way to specify thisisto place propertiesin the
symmetric. properties file. When started up, SymmetricDS reads the configuration and state from the
database. If the configuration tables are missing, they are created automatically (auto creation can be
disabled). Basic configuration is described by inserting into the following tables (the complete data model
isdefined in Appendix A, Data Modél (p. 61)).

 NODE_GROUP - specifiesthetiersthat exist in a SymmetricDS network
« NODE_GROUP_LINK - links two node groups together for synchronization
* CHANNEL - grouping and priority of synchronizations

» TRIGGER - specifies tables, channels, and conditions for which changes in the database should be
captured

ROUTER - specifies the routers defined for synchronization, along with other routing details

TRIGGER_ROUTER - provides mappings of routers and triggers

During start up, triggers are verified against the database, and database triggers are installed on tables that
require data changes to be captured. The Route, Pull and Push Jobs begin running to synchronize changes
with other nodes.

Each node requires properties that allow it to connect to a database and register with a parent node. To
give anode itsidentity, the following properties are used:

group.id
The node group that this node is a member of. Synchronization is specified between node groups,
which means you only need to specify it once for multiple nodes in the same group.

external.id

The external id for this node has meaning to the user and provides integration into the system where it
is deployed. For example, it might be aretail store number or aregion number. The external id can be
used in expressions for conditional and subset data synchronization. Behind the scenes, each node has
a unique sequence number for tracking synchronization events. That makesit possible to assign the
same external id to multiple nodes, if desired.

Symmetric DSv2.0 23

Configuration

sync.url
The URL where this node can be contacted for synchronization. At startup and during each heartbeat,

the node updates its entry in the database with this URL.

When anew nodeisfirst started, it is has no information about synchronizing. It contacts the registration
server in order to join the network and receive its configuration. The configuration for al nodesis stored
on the registration server, and the URL must be specified in the following property:

registration.url
The URL where this node can connect for registration to receive its configuration. The registration
server is part of SymmetricDS and is enabled as part of the deployment.

When deploying to an application server, it is common for database connection pools to be found in the
Java naming directory (JNDI). In this case, set the following property:

db.jndi.name

The name of the database connection pool to use, which isregistered in the INDI directory tree of the
application server. It isrecommended that this DataSource is NOT transactional, because
SymmetricDS will handle its own transactions.

For a deployment where the database connection pool should be created using a JDBC driver, set the
following properties.

db.driver
The class name of the IDBC driver.

db.url
The IDBC URL used to connect to the database.

db.user
The database username, which is used to login, create, and update SymmetricDS tables.

db.password
The password for the database user.

4.2. Node

A node, asingleinstance of SymmetricDS, is defined in the NODE table. Two other tables play a direct
role in defining anode, aswell ThefirstisNODE_IDENTITY. The only row in thistableisinserted in
the database when the node first registers with a parent node. In the case of aroot node, therow is
entered by the user. The row is used by a node instance to determine its node identity.

The following SQL statements set up atop-level registration server as a node identified as "00000" in the
"corp" node group.

insert into SYM NODE

Symmetric DSv2.0 24

Configuration

(node_id, node group_id, external id, sync_enabl ed)
val ues
(' 00000', 'corp', '00000', 1);

insert into SYM NODE | DENTITY val ues (' 00000');

The second table, NODE_SECURITY has rows created for each child node that registers with the node,
assuming auto-registration is enabled. If auto registration is not enabled, you must create arow in NODE
and NODE_SECURITY for the node to be able to register. Y ou can also, with this table, manually cause
anodeto re-register or do are-initial load by setting the corresponding columnsin the table itself.
Registration is discussed in more detail in Section 4.7, Opening Registration (p. 33).

4.3. Node Group

Node Groups are straightforward to configure and are defined in the NODE_GROUP table. The
following SQL statements would create node groups for "corp” and "store" based on our retail store
example.

insert into SYM NODE GROUP
(node_group_id, description)

val ues
('store', "Aretail store node');

insert into SYM NODE GROUP
(node_group_id, description)
val ues
('corp', 'A corporate node');

4.4. Node Group Link

Similarly, Node Group links are established using a data event action of 'P' for Push and 'W' for Pull
("wait"). The following SQL statements links the "corp" and "store" node groups for synchronization. It
configures the "store" nodes to push their data changes to the "corp" nodes, and the "corp" nodes to send
changesto "store" nodes by waiting for a pull.

insert into SYM NODE_GROUP_LI NK

(source_node_group, target node_group, data event _action)
val ues
('store', 'corp', 'P);

insert into SYM NODE_GROUP_LINK

(source_node_group, target node_group, data event action)
val ues

(‘corp', 'store', '"W);

Symmetric DSv2.0 25

Configuration

4.5. Channel

By categorizing data into channels and assigning them to TRIGGERS, the user gains more control and
visibility into the flow of data. In addition, SymmetricDS allows for synchronization to be enabled,
suspended, or scheduled by channels as well. The frequency of synchronization and order that data gets
synchronized is aso controlled at the channel level.

The following SQL statements setup channels for aretail store. An "item" channel includes data for items
and their prices, while a"sale_transaction” channel includes data for ringing sales at aregister.

insert into SYM CHANNEL
(channel _id, processing_order, max_batch_size, max_batch to_send,
extract _period mllis, batch algorithm enabled, description)

val ues
(‘item, 10, 1000, 10, O, 'default', 1, 'Itemand pricing data');

insert into SYM CHANNEL
(channel _id, processing_order, max_batch_size, max_batch_to_send,
extract _period _mllis, batch_algorithm enabled, description)

val ues
('sale transaction', 1, 1000, 10, 60000, 'transactional', 1,

‘retail sale transactions fromregister');

Batching is the grouping of data, by channel, to be transferred and committed at the client together. There
are three different out-of-the-box batching algorithms which may be configured in the batch_algorithm
column on channel.

default
All changes that happen in a transaction are guaranteed to be batched together. Multiple transactions
will be batched and committed together until there is no more data to be sent or the max_batch sizeis

reached.

transactional

Batches will map directly to database transactions. If there are many small database transactions, then
there will be many batches. The max_batch_size column has no effect.

nontransactional

Multiple transactions will be batched and committed together until there is no more data to be sent or

the max_batch_sizeisreached. The batch will be cut off at the max_batch_size regardless of whether
itisin the middle of atransaction.

4.6. Triggers and Routers

4.6.1. Trigger

SymmetricDS captures synchronization data using database triggers. SymmetricDS' Triggers are defined

Symmetric DSv2.0 26

Configuration

in the TRIGGER table. Each record is used by SymmetricDS when generating database triggers.
Database triggers are only generated when atrigger is associated with aROUTER whose
sour ce_node_gr oup_i d matches the node group id of the current node.

Thefollowing SQL statement defines atrigger that will capture data for atable named "item" whenever
dataisinserted, updated, or deleted. The trigger is assigned to a channel also called ‘'item'.

insert into SYM TRI GGER

(trigger _id, source_table _nane, channel _id, | ast_update_time,create_tine)
val ues

("item, 'item, 'item, current _tinmestanp, current_tinestanp);

! Warning

Note that many databases allow for multiple triggers of the same type to be defined. Each
database defines the order in which the triggers fire differently. If you have additional triggers
beyond those SymmetricDS installs on your table, please consult your database documentation
to determine if there will be issues with the ordering of the triggers.

4.6.2. Router

Routers provided in the base implementation currently include:

» Default Router - arouter that sends all datato all nodes that belong to the target node group
defined in the router.

» Column Match Router - arouter that compares old or new column values to a constant value or the
value of anode's external_id or node _id.

» Sub-select Router - arouter that executes a SQL expression against the database to select nodes to
route to. This SQL expression can be passed values of old and new column values.

» Bean Shell Router - arouter that executes a BSH expression in order to select nodes to route to.
The BSH expression can use the the old and new column values.

« Xml Publishing Router - arouter the publishes data changes directly to a messaging solution
instead of transmitting changes to registered nodes. This router must be configured manually in
XML as an extension point.

The mapping between the set of triggers and set of routers is many-to-many. This means that one trigger
can capture changes and route to multiple locations. It al'so means that one router can be defined an
associated with many different triggers.

4.6.2.1. Default Router

The simplest router isarouter that sends all the data that is captured by its associated triggersto all the
nodes that belong to the target node group defined in the router. A router is defined asarow in the

Symmetric DSv2.0 27

Configuration

ROUTER table. It isthen linked to triggersin the TRIGGER_ROUTER table.

The following SQL statement defines arouter that will send data from the ‘corp' group to the 'store’ group.

insert into SYM ROUTER
(router_id, source_node_group_id, target_node_group_id,
create tine, |ast_update tine)
val ues
('corp-2-store','corp', 'store', current _tinestanp, current_tinestanp);

The following SQL statement maps the 'corp-2-store’ router to the item trigger.

insert into SYM TRI GGER_ROUTER

(trigger _id, router_id, initial |oad order, create tine, |ast_update tine)
val ues

("item, 'corp-2-store', 1, current_tinestanp, current_tinestanp);

4.6.2.2. Column Match Router

Sometimes requirements may exist that require data to be routed based on the current value or the old
value of acolumn in the table that is being routed. Column routers are configured by setting the

rout er _type column on the ROUTER table to col um and setting the r out er _expressi on column to an
equality expression that represents the expected value of the column.

Thefirst part of the expression is always the column name. The column name should always be defined
in upper case. The upper case column name prefixed by OLD__ can be used for a comparison being done
with the old column data val ue.

The second part of the expression can be a constant value, atoken that represents another column, or a
token that represents some other SymmetricDS concept. Token values always begin with acolon (:).

Consider atable that needs to be routed to all nodes in the target group only when a status column is set to
'OK."' Thefollowing SQL statement will insert a column router to accomplish that.

insert into SYM ROUTER

(router _id, source _node group_ id, target node group_id, router_type,
router_expression, create tine, |ast_update tine)

val ues

('corp-2-store-ok',"'corp', 'store', 'colum’,
' STATUS=OK', current tinestanp, current _timestanp);

Consider atable that needs to be routed to all nodes in the target group only when a status column
changes values. The following SQL statement will insert a column router to accomplish that.

insert into SYM ROUTER

Symmetric DSv2.0 28

Configuration

(router _id, source node group id, target node group_id, router_type,
rout er _expression, create tine, |ast_update tine)
val ues
('corp-2-store-status','corp', 'store', 'colum',
' STATUS! =: OLD_STATUS', current _tinestanp, current tinmestanp);

Consider atable that needs to be routed to only nodesin the target group whose STORE_ID column
matches the external id of anode. The following SQL statement will insert a column router to accomplish
that.

insert into SYM ROUTER
(router _id, source node group id, target node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues
('corp-2-store-id',"'corp', 'store', 'colum',
"STORE | D=: EXTERNAL I D', current tinmestanp, current _tinestanp);

Attributes on a NODE that can be referenced with tokens include:
« NODE_ID

« EXTERNAL_ID

« NODE_GROUP_ID

Consider atable that needs to be routed to a redirect node defined by its external id in the
REGISTRATION_REDIRECT table. The following SQL statement will insert a column router to
accomplish that.

insert into SYM ROUTER
(router _id, source node group_ id, target node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues
('corp-2-store-redirect','corp', 'store', 'colum',
' STORE | D=: REDI RECT_NCDE', current _tinmestanp, current _timestanp);

More than one column may be configured in arouter_expression. When more than one column is
configured, al matches are added to the list of nodes to route to. The following is an example where the
STORE_ID column may contain the STORE_ID to route to or the constant of ALL which indicates that
all nodes should receive the update.

insert into SYM ROUTER
(router _id, source _node group_ id, target _node _group_id, router_type,
router_expression, create_tine, |ast_update_ tine)

val ues
('corp-2-store-nultiple-matches','corp', 'store', 'colum',
' STORE_| D=ALL

STORE | D=: EXTERNAL I D, current _timestanp, current_ti mestanp);

Symmetric DSv2.0 29

Configuration

The NULL keyword may be used to check if acolumnisnull. If the column is null, then datawill be
routed to all nodes who qualify for the update. This following is an example where the STORE_ID
column is used to route to a set of nodes who have a STORE _ID equal to their EXTERNAL _ID, or to all
nodesif the STORE_ID isnull.

insert into SYM ROUTER
(router_id, source_node_group_id, target_node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues
('corp-2-store-nultiple-matches', ' corp', 'store', 'colum',
' STORE_| D=NULL
STORE | D=: EXTERNAL I D, current _timestanp, current _timestanp);

4.6.2.3. Lookup Table Router

A lookup table may contain the id of the node where data needs to be routed. This could be an existing
table or an ancillary table that is added specifically for the purpose of routing data. Lookup table routers
are configured by setting therout er _t ype column on the ROUTER table to 1 ookupt abl e and setting alist of

configuration parametersin the rout er _expr essi on column.

Each of the following configuration parameters are required.

LOOKUP_TABLE
Thisis the name of the lookup table.

KEY_COLUMN
Thisisthe name of the column on the table that is being routed. It will be used as akey into the

lookup table.

LOOKUP_KEY_COLUMN
Thisisthe name of the column that is the key on the lookup table.

EXTERNAL _ID_COLUMN
This is the name of the column that contains the external_id of the node to route to on the lookup

table.

Note that the lookup table will be read into memory and cached for the duration of arouting pass for a
single channel.

Consider atable that needs to be routed to a specific store, but the data in the changing table only contains
brand information. In this case, the STORE table may be used as alookup table.

insert into SYM ROUTER

(router_id, source_node _group_id, target _node group_id, router_type,
router_expression, create tine, |ast_update tine)

val ues

('corp-2-store-ok','corp', 'store', 'l ookuptable',

Symmetric DSv2.0 30

Configuration

' LOOKUP_TABLE=STORE

KEY_COLUMN=BRAND | D

LOOKUP_KEY_COLUMN=BRAND | D

EXTERNAL | D COLUMN=STORE | D, current tinmestanp, current tinmestanp);

4.6.2.4. Relational Router

Sometimes routing decisions need to be made based on data that is not in the current row being
synchronized. Consider an example where an Order table and a OrderLineltem table need to be routed to
a specific store. The Order table has a column named order_id and STORE_ID. A store node has an
externa_id that is equal to the STORE_ID on the Order table. OrderLineltem, however, only has a
foreign key to its Order of order_id. To route OrderLineltems to the same nodes that the Order will be
routed to, we need to reference the master Order record.

There are two possible ways to route the OrderLineltem in SymmetricDS. Oneisto configure a
'subselect’ router_type on the ROUTER table and the other is to configure an external_select on the
TRIGGER table.

A 'subselect’ is configured with arouter_expression that isa SQL select statement which returns a result
set of the node_ids that need routed to. Column tokens can be used in the SQL expression and will be
replaced with row column data. The overhead of using this router type is high because the 'subsel ect’
statement runs for each row that is routed. It should not be used for tables that have alot of rowsthat are
updated. It also has the disadvantage that if the Order master record is deleted, then no results would be
returned and routing would not happen. The router_expression is appended to the following SQL
statement in order to select the nodeids.

sel ect c.node_id fromsym node ¢ where
c.node_group_i d=: NODE_GROUP_I D and c. sync_enabl ed=1 and

Consider atable that needs to be routed to all nodes in the target group only when a status column is set to
'OK."' Thefollowing SQL statement will insert a column router to accomplish that.

insert into SYM ROUTER
(router _id, source _node group_ id, target node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues
('corp-2-store','corp', 'store', 'subselect’
"c.external _id in (select STORE ID fromorder where order_id=:ORDER ID)",
current tinmestanp, current _tinmestanp);

Alternatively, when using an external_select on the TRIGGER table, datais captured in the
EXTERNAL_DATA column of the DATA table at the time atrigger fires. The EXTERNAL_DATA can
then be used for routing by using arouter_type of ‘column’. The advantage of this approach isthat itis
very unlikely that the master Order table will have been deleted at the time any DML accures on the
OrderLineltem table. It also is a bit more effcient than the 'subselect' approach, although the triggers

Symmetric DSv2.0 31

Configuration

produced do run the extra external_select inline with application database updates.

In the following example, the STORE_ID is captured from the Order table in the EXTERNAL_DATA
column. EXTERNAL_DATA isaways available for routing as a virtual column in a‘column’ router. The
router is configured to route based on the captured EXTERNAL _DATA to all nodes whose external_id
matches. Note that other supported node attribute token can aso be used for routing.

insert into SYM TRl GGER
(trigger_id, source_tabl e_nane, channel _i d, ext ernal _sel ect,
| ast _update tine,create tine)
val ues
("orderlineitem, 'orderlineitem, 'orderlineitem,'select STORE_|ID
from order where order i d=$(curTriggerVal ue). $(cur Col umPrefi x)order_id'
current tinmestanp, current _tinmestanp);

insert into SYM ROUTER

(router _id, source_node group_id, target _node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues

('corp-2-store-ext','corp', 'store', 'colum',
" EXTERNAL_DATA=: EXTERNAL_I D', current tinmestanp, current _tinestanp);

4.6.2.5. Scripted Router

When more flexibility is needed in the logic to choose the nodes to route to, then the a Bean Shell router

may be used. Bean Shell is a Java-like scripting language. Documentation for the Bean Shell scripting
language can be found at http://www.beanshell.org.

Therouter_type for a Bean Shell router is'bsh'. The router_expression isavalid Bean Shell script that:

 adds node ids to the 'targetNodes' collection which is bound to the script
* returns anew collection of nodeids

* returnsasingle nodeid

» returns true to indicate that all nodes should be routed or returns false to indicate that no nodes
should be routed

Also bound to the script evaluation is alist of 'nodes. Thelist of 'nodes isalist of eligible Node objects.
The current data column values and the old data column values are bound to the script evaluation as Java
object representations of the column data. The columns are bound using the uppercase names of the
columns. Old values are bound to uppercase representations that are prefixed with 'OLD .

In the following example, the node id is acombination of STORE_ID and WORKSTATION_NUMBER,
both of which are columns on the table that is being routed.

insert into SYM ROUTER
(router _id, source node group id, target node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues

Symmetric DSv2.0 32

http://www.beanshell.org/

Configuration

('corp-2-store-bsh','corp', 'store', 'bsh',
't ar get Nodes. add(STORE_ID + "-" + WORKSTATI ON_NUMBER) ; ',
current _timestanp, current_timestanp);

The same could also be accomplished by simply returning the node id. The last line of absh script is
alwaysthe return value.

insert into SYM ROUTER
(router_id, source_node_group_id, target_ _node group_id, router_type,
router_expression, create tine, |ast_update_ tine)

val ues
('corp-2-store-bsh',"corp', 'store', 'bsh',
"STORE ID + "-" + WORKSTATI ON_NUMBER ,

current timestanp, current_timestanp);

The following example will synchronizeto all nodesif the FLAG column has changed, otherwise no
nodes will be synchronized.

insert into SYM ROUTER
(router_id, source_node _group_id, target _node group_id, router_type,
router_expression, create tine, |ast_update tine)
val ues
('corp-2-store-flag-changed','corp', 'store', 'bsh',
"FLAG !'= null && !FLAG equal s(OLD FLAG ',
current timestanp, current _timestanp);

4.7. Opening Registration

Node registration is the act of setting up anew NODE and NODE_SECURITY so that when the new
node is brought onlineit is allowed to join the system. Nodes are only allowed to register if rows exist for
the node and the regi st rati on_enabl ed flag isset to 1. If the aut o. regi st rati on SymmetricDS property is
set to true, then when anode attemptsto register, if registration has not already occurred, the node will
automatically be registered.

SymmetricDS allows you to have multiple nodes with the same ext ernal _i d. Out of the box,
openRegistration will open a new registration if aregistration already exists for a node with the same
external_id. A new registration means a new node with anew node_i d and the same ext ernal _i d will be
created. If you want to re-register the same node you can use the r ecpenRegi st rati on() JMX method
which takes anode_i d as an argument.

4.8. Initial Load

Aninitial load isthe process of seeding tables at atarget node with data from its parent node. An initia

Symmetric DSv2.0 33

Configuration

load can not occur until after anodeisregistered. Aninitial load is requested by setting the

initial _l oad_enabl ed cOlumn on NODE_SECURITY to 1 on therow for the target node in the parent
node's database. The next time the target node synchronizes, reload batches will be inserted. At the same
time reload batches are inserted, al previously pending batches for the node are marked as successfully
sent.

SymmetricDS recognizes that an initial load has completed when thei nitial _I oad_ti me column on the
target node is set to anon null value.

Reload batches are inserted in order according to thei ni ti al _I oad_order column on
TRIGGER_ROUTER. Initial load datais aways queried from the source database table. All datais
passed through the configured router to filter out data that might not be targeted at a node.

A more efficient way to subset the datafor aload isto provideaninitial _I oad_sel ect Clause on
TRIGGER_ROUTER. If aninitial _I oad_sel ect Clauseis provided, datawill not be passed through the
configured router during initial load. In cases where custom routing is done using afeature like

Section 4.6.2.4, Relational Router (p. 31) , aninitial _I oad_sel ect Clause will always need to be provided
because the router would not function properly with initial load data.

f I mportant

When providing aninitial _I oad_sel ect be sureto test out the criteria against production data
in aquery browser. Do an explain plan to make sure you are properly using indexes.

4.8.1. Dead Triggers

Occasionally the decision of what datato load initially resultsin additional triggers. These triggers,
known as Dead Triggers, are configured such that they do not capture any data changes. A "dead"
Trigger is one that does not capture data changes. In other words, the sync_on_i nsert, sync_on_updat e, and
sync_on_del et e properties for the Trigger are all set to false. However, since the Trigger is specified, it
will beincluded in theinitial load of datafor target Nodes.

Why might you need a Dead Trigger? A dead Trigger might be used to load a read-only lookup table, for
example. It could also be used to load a table that needs populated with example or default data. Another
useisarecovery load of datafor tables that have asingle direction of synchronization. For example, a
retail store records sales transaction that synchronize in one direction by trickling back to the central
office. If theretall store needsto recover al the sales transactions from the central office, they can be sent
are part of aninitial load from the central office by setting up dead Triggersthat "sync" in that direction.

The following SQL statement sets up a non-syncing dead Trigger that sendsthesal e_t ransacti on tableto
the "store" Node Group from the "corp" Node Group during an initial load.

insert into symtrigger (TR GGER | D, SOURCE_CATALOG NAME,
SOURCE_SCHEMA_NAME, SOURCE_TABLE_NAME, CHANNEL _| D,
SYNC_ON_UPDATE, SYNC_ON_I| NSERT, SYNC_ON_DELETE,
SYNC_ON_| NCOM NG_BATCH, NAME_FOR_UPDATE_TRI GGER,
NAME_FOR_| NSERT_TRI GGER, NAME_FOR_DELETE_TRI GGER,

Symmetric DSv2.0 34

Configuration

SYNC_ON_UPDATE_CONDI Tl ON, SYNC_ON_| NSERT_CONDI TI ON,
SYNC_ON_DELETE_CONDI Tl ON, EXTERNAL_SELECT,

TX_| D_EXPRESSI ON, EXCLUDED_COLUWN_NAMES,

CREATE_TI ME, LAST_UPDATE_BY, LAST_UPDATE_TI ME)

val ues (' SALE TRANSACTI ON_DEAD , nul |, nul I,

' SALE_TRANSACTI ON' , ' transaction',
0,0,0,0,null,null,null,null,null,null,null,null,null,
current tinmestanp, ' denmo',current _tinestanp);

insert into symrouter (ROUTER |ID, TARGET CATALOG NAME, TARGET SCHEMA NANE,
TARGET_TABLE_NAME, SOURCE_NODE_GROUP_I D, TARGET_NODE_GROUP_I| D, ROUTER_TYPE,
ROUTER_EXPRESSI ON, SYNC_ON_UPDATE, SYNC_ON_| NSERT, SYNC_ON_DELETE,
CREATE_TI ME, LAST_UPDATE_BY, LAST_UPDATE_TI ME)
val ues (' CORP_2_STORE , null,null, null,
‘corp','store' ,null,null,1,1,1,
current tinmestanp, ' denmo',current _tinestanp);

insert into symtrigger router (TRI GGER_ID, ROUTER | D, I NI TI AL_LOAD ORDER,
I NI TI AL_LOAD_SELECT, CREATE_TI ME, LAST_UPDATE_BY, LAST_UPDATE_TI MVE)
val ues (' SALE_TRANSACTI ON_DEAD ,' CORP_2 REG ON , 100, nul |,
current tinmestanp, ' denmo',current _tinestanp);

4.9. Bi-Directional Synchronization

SymmetricDS allows tables to be synchronized bi-directionally. Note that an outgoing synchronization
does not process changes during an incoming synchronization on the same node unless the trigger was
created with the sync_on_i nconi ng_bat ch flag set. If the sync_on_i nconi ng_bat ch flag is set, then update
loops are prevented by afeature that is available in most database dialects. More specifically, during an
incoming synchronization the source node_i d IS put into a database session variable that is available to the
database trigger. Data events are not generated if the target node_i d 0N an outgoing synchronization is
equal to the source node_i d.

By default, only the columns that changed will be updated in the target system.

More complex conflict resolution strategies can be accomplished by using the | pat aLoader Fi I ter
extension point which has access to both old and new data.

4.10. Multi-Tiered Synchronization

As shown in Section 3.2, Organizing Nodes (p. 15) , there may be scenarios where data needs to flow
through multiple tiers of nodes that are organized in atree-like network with each tier requiring a
different subset of data. For example, you may have a system where the lowest tier may by a computer or
device located in a store. Those devices may connect to a server located physically at that store. Then the
store server may communicate with a corporate server for example. In this case, the three tiers would be
device, store, and corporate. Each tier istypically represented by a node group. Each node in the tier
would belong to the node group representing that tier.

A node will always push and pull data to other node groups according to the node group link
configuration. A node can only pull and push data to other nodes that are represented node tablein its

Symmetric DSv2.0 35

Configuration

database and having sync_enabl ed = 1. Because of this, atree-like hierarchy of nodes can be created by
having only a subset of nodes belonging to the same node group represented at the different branches of
the tree.

If auto registration is turned off, then this setup must occur manually by opening registration for the
desired nodes at the desired parent node and by configuring each node'sregi stration. url to be the parent
node's URL. The parent node is always tracked by the setting of the parent'snode_i d in the

created_at _node_i d column of the new node. When a node registers and downloads its configuration it is
always provided the configuration for nodes that might register with the node itself based on the Node
Group Links defined in the parent node.

4.11. Registration Redirect

When deploying a multi-tiered system it may be advantageous to have only one registration server, even
though the parent node of a registering node could be any of a number of nodesin the system. In
SymmetricDS the parent node is always the node that a child registers with. The
REGISTRATION_REDIRECT table allows a single node, usually the root server in the network, to
redirect registering nodes to their true parents. It does so based on a mapping found in the table of the
external id (regi strant_external _i d) to the parent's node id (r egi st rat i on_node_i d).

For example, if it isdesired to have a series of regional serversthat workstations at retail stores get
assigned to based on their ext ernal _i d, the store number, then you might insert into
REGISTRATION_REDIRECT the store number asther egi strant _ext ernal _i d and the node_i d of the
assigned region astheregi st rati on_node_i d. When aworkstation at the store registers, the root server
send an HTTP redirect to the sync_ur1 of the node that matches the r egi st rati on_node_j d.

4.12. Jobs

The SymmetricDS software alows for outgoing and incoming changes to be synchronized to/from other
databases. The node that initiates a synchronization connection is the client, and the node receiving a
connection is the host. Because synchronization is configurable to push or pull in either direction, the
same node can act as either aclient or a host in different circumstances.

The SymmetricDS software consists of a series of background jobs, managers, Servlets, and services
wired together via dependency injection using the Spring Framework.

As aclient, the node runs the router job, push job and pull job on atimer thread. The router job uses
services to create batches that are targeted at certain nodes. The push job uses services to extract and
stream data to another node (that is, it pushes data). The response from a push isalist of batch
acknowlegements to indicate that data was loaded. The pull job uses servicesto load data that is streamed
from another node (i.e., it pulls data). After loading data, a second connection is made to send alist of
batch acknowlegements.

As a host, the node waits for incoming connections that pull, push, or acknowledge data changes. The
push Servlet uses services to load data that is pushed from a client node. After loading data, it responds
with alist of batch acknowledgements. The pull Servlet uses servicesto extract, and stream data back to
the client node. The ack Servlet uses services to update the status of data that was loaded at a client node.

Symmetric DSv2.0 36

http://springframework.org

Configuration

The router job batches and routes data.

By default, data is extracted from the source database into memory until athreshold sizeis reached. If the

threshold sizeisreached, datais streamed to atemporary file in the JVM's default temporary directory.

Next, the datais streamed to the target node across the transport layer. The receiving node will cache the

datain memory until the threshold size is reached, writing to atemporary fileif necessary. At last, the
dataisloaded into the target database by the data loader. This step by step approach allows for extract

time, transport time, and load time to all be measured independently. It aso allows database resources to

be used most optimally.

The transport manager handles the incoming and outgoing streams of data between nodes. The default
transport is based on a simple implementation over HTTP. Aninternal transport is also provided. Itis

possible to add other implementations, such as a socket-based transport manager.

Node communication over HTTP is represented in the following figure.

<=<dient node=>

<<host node>>

openRegistration{client node, 001)

001 000
| |
el prndey
configure database ot
sync tiggers ot B
I |
T
register http get
sync triggers
DUl hiip get :
ack hitp post
T T
push job ol -
ok to push? http head
push http put =

Figure4.1. Node Communication

The st andal onesymet ri cEngi ne iSWrapper API that can be used to directly start the client services only.

reloadNode(D01)

The symet ri cvebserver isawrapper API that can be used to directly start both the client and host services

Symmetric DSv2.0

37

Configuration

inside a Jetty web container. The synmet ri cLauncher provides command line tools to work with and start
SymmetricDS.

4.13. Controlling Synchronization

The frequency of data synchronization is controlled by the coordination of a series of asynchronous
events.

After datais captured, the first event that occursis the routing of the captured DATA rows. Datais routed
by the Route Job. It is a single background task that insertsinto DATA_EVENT and
OUTGOING_BATCH. The Route Job determines which nodes datawill be sent to, aswell as how much
data will be batched together for transport. When the start . rout e. j ob SymmetricDS property is set to
true, the frequency that routing occursis controlled by thej ob. routing. peri od. ti me. ms. Each time dataiis
routed, the DATA_REF tableis updated with the id of the last contiguous data row to have been
processed. Thisis done so the query to find unrouted datais optimal.

After dataisrouted, it awaits transport to the target nodes. Transport can occur when aclient nodeis
configured to pull data or when the host node is configured to push data. These events are controlled by
the Push and the Pull Jobs. Whenthestart. pul I .j ob SymmetricDS property is set to t r ue, the frequency
that datais pulled is controlled by thej ob. pul I . peri od. ti me. ns. When thestart. push. j ob SymmetricDS
property is set tot rue, the frequency that datais pushed is controlled by thej ob. push. peri od. ti ne. ns.
Datais extracted by channel from the source database's DATA table at an interval controlled by the
extract_period_ni|lis column onthe CHANNEL table. Theast _extract_tine isaways recorded, by
channel, on the NODE_CHANNEL _CTL table for the host node'sid. When the Pull and Push Job run, if
the extract period has not passed according to the last extract time, then the channel will be skipped for
thisrun. If theextract _period_ni11is iSSet to zero, data extraction will happen every time the jobs run.

SymmetricDS also provides the ability to configure windows of time when synchronization is allowed.
Thisis done using the NODE_GROUP_CHANNEL_WINDOW table. A list of allowed time windows
can be specified for anode group and a channel. If one or more windows exist, then data will only be
extracted and transported if the time of day falls within the window of time specified. The configured
times are always for the target node'slocal time. If thestart _ti me is greater than the end_t i ne, then the
window crosses over to the next day.

All dataloading may be disabled by setting the dat al oader . enabl e property to false. This has the effect of
not allowing incoming synchronizations, while allowing outgoing synchronizations. All data extractions
may be disabled by setting the dat aext ract or . enabl e property to false. These properties can be controlled
by inserting into the root server's PARAMETER table. These properties affect every channel with the
exception of the ‘config' channel.

4.14. Sync Triggers Job

SymmetricDS examines the current configuration, corresponding database triggers, and the underlying
tables to determine if database triggers need created or updated. The change activity is recorded on the
TRIGGER_HIST table with areason for the change. The following reasons for a change are possible:

* N - New trigger that has not been created before

Symmetric DSv2.0 38

Configuration

» S- Schema changes in the table were detected
» C- Configuration changesin Trigger
e T -Trigger was missing

A configuration entry in Trigger without any history in Trigger Hist resultsin a new trigger being created
(N). The Trigger Hist stores a hash of the underlying table, so any alteration to the table causes the trigger
to be rebuilt (S). When the1 ast _updat e_t i me iS changed on the Trigger entry, the configuration change
causes the trigger to be rebuilt (C). If an entry in Trigger Hist is missing the corresponding database
trigger, the trigger is created (T).

The process of examining triggers and rebuilding them is automatically run during startup and each night
by the SyncTriggersdob. The user can also manually run the process at any time by invoking the

syncTri ggers() method over IMX. The SyncTriggersJob is enabled by default to run at 15 minutes past
midnight. If SymmetricDS is being run from a collection of servers (multiple instances of the same Node
running against the same database), then locking should be enable to prevent database contention. The
following runtime properties control the behavior of the process.

start.synctriggers.job
Whether the sync triggersjob is enabled for this node. [Default: true]

job.synctrigger s.after midnight.minutes
If scheduled, the sync triggers job will run nightly. Thisis how long after midnight that job will run.
[Default: 15]

cluster.lock.during.sync.triggers
Indicate if the sync triggersjob is clustered and requires alock before running. [Default: false]

4.15. IMS Publishing

With the proper configuration SymmetricDS can publish XML messages of captured data changesto IMS
during routing or transactionally while data loading synchronized data into a target database. The
following explains how to publish to JM S during synchronization to the target database.

The XmlPublisherDatal oaderFilter is a|Datal oaderFilter that may be configured to publish specific
tables as an XML message to a JMS provider. See Chapter 6, Extending SymmetricDS (p. 53) for
information on how to configure an extension point. If the publish to IMSfails, the batch will be marked
in error, the loaded data for the batch will be rolled back and the batch will be retried during the next
synchronization run.

The following is an example extension point configuration that will publish four tablesin XML with a
root tag of 'sale’. Each XML message will be grouped by the batch and the column names identified by
the groupByColumnNames property which have the same values.

<?xm version="1. 0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. org/ schenma/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

Symmetric DSv2.0 39

Configuration

xm ns: cont ext ="htt p: // www. spri ngf ranmewor k. or g/ scherma/ cont ext "

xsi : schemaLocati on="htt p://wwv. spri ngf ramewor k. or g/ schema/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmework. or g/ schema/ cont ext
http://ww. spri ngfranmewor k. or g/ schena/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<bean i d="configuration-publishingFilter"
class="org.junmpm nd. symretric.integrate. Xm Publ i sher Dat aLoaderFi |l ter">
<property nane="xm TagNaneToUseFor G oup" val ue="sal e"/ >
<property name="t abl eNamesToPubl i shAsG oup" >
<list>
<val ue>SALE TX</ val ue>
<val ue>SALE LI NE | TEMK/ val ue>
<val ue>SALE_TAX</ val ue>
<val ue>SALE TOTAL</val ue>
</list>
</ property>
<property nanme="gr oupByCol utmNanes" >
<list>
<val ue>STORE_| D</ val ue>
<val ue>BUSI NESS DAY</ val ue>
<val ue>WORKSTATI ON_| D</ val ue>
<val ue>TRANSACTI ON_I D</ val ue>
</list>
</ property>
<property nane="publisher">
<bean cl ass="org. junpni nd. symetric.integrate. Si npl eJnsPubl i sher" >
<property nane="jnsTenpl ate" ref="defi nedSpringJnmsTenpl ate"/>
</ bean>
</ property>
</ bean>
</ beans>

The publisher property on the XmlPublisherDatal oaderFilter takes an interface of type IPublisher. The
implementation demonstrated here is an implementation that publishes to IMS using Spring's IMS
template. Other implementations of 1Publisher could easily publish the XML to other targets like an
HTTP server, the file system or secure copy it to another server.

The above configuration will publish XML similiar to the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<sal e xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
i d="0012010-01-220031234" nodei d="00001" tine="1264187704155" >
<row entity="SALE TX" dm ="1">
<dat a key="STORE | D'>001</dat a>
<dat a key="BUSI NESS_DAY">2010- 01- 22</ dat a>
<dat a key="WORKSTATI ON_| D'>003</ dat a>
<dat a key="TRANSACTI ON_| D'>1234</ dat a>
<dat a key="CASHI ER | D'>010110</ dat a>
</ r ow>
<row entity="SALE LINE I TEM' dm ="1">
<dat a key="STORE_| D'>001</ dat a>
<dat a key="BUSI NESS_DAY">2010- 01- 22</ dat a>
<dat a key="WORKSTATI ON | D'>003</ dat a>
<dat a key="TRANSACTI ON_I D'>1234</ dat a>
<dat a key="SKU'>9999999</ dat a>
<dat a key="PRI CE">10. 00</ dat a>
<data key="DESC' xsi:nil="true"/>
</ row>
<row entity="SALE LINE I TEM' dm ="1">

Symmetric DSv2.0

40

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html#jms-jmstemplate
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html#jms-jmstemplate

Configuration

<data key="
<dat a key="
<dat a key="
<data key="
<data key="
<dat a key="
<data key="
</ row>
<row entity="
<dat a key="
<data key="
<data key="
<data key="
<dat a key="
</ row>
<row entity="
<data key="
<dat a key="
<data key="
<data key="
<data key="
</ row>
</ sal e>

STORE | D'>001</ dat a>

BUSI NESS DAY" >2010- 01- 22</ dat a>
WORKSTATI ON_| D' >003</ dat a>
TRANSACTI ON_| D' >1234</ dat a>
SKU' >9999999</ dat a>

PRI CE">10. 00</ dat a>

DESC' xsi:nil="true"/>

SALE TAX" dmd ="1">
STORE_| D' >001</ dat a>

BUSI NESS_DAY" >2010- 01- 22</ dat a>
WORKSTATI ON_| D' >003</ dat a>
TRANSACTI ON_| D' >1234</ dat a>
AMOUNT" >1. 33</ dat a>

SALE TOTAL" dnmi="|">
STORE_| D' >001</ dat a>

BUSI NESS_DAY" >2010- 01- 22</ dat a>
WORKSTATI ON_| D' >003</ dat a>
TRANSACTI ON_| D' >1234</ dat a>
AMOUNT" >21. 33</ dat a>

To publish IMS messages during routing the same pattern is valid, with the exception that the extension

point would be the XmlPublisherDataRouter and the router would be configured by setting the
router_type Of aROUTER to the Spring bean name of the registered extension point. Of course, the
router would need to be linked through TRIGGER _ROUTERSs to each TRIGGER table that needs

published.

Symmetric DSv2.0

41

Chapter 5. Deployment

This chapter focuses on the deployment options and configuration of SymmetricDS. Issues such as
starting SymmetricDS as a service, clustering, and encryption are among the topics.

5.1. Deployment Options

An instance of SymmetricDS can be deployed in several ways.
» Web application archive (WAR) deployed to an application server

This option means packaging a WAR file and deploying to your favorite web server, like Apache
Tomcat. It's alittle more work, but you can configure the web server to do whatever you need.
SymmetricDS can also be embedded in an existing web application, if desired.

« Standalone service that embeds Jetty web server

This option means running the sym command line, which launches the built-in Jetty web server.
Thisisasimple option becauseit is already provided, but you lose the flexibility to configure the
web server any further.

* Embedded as a Java library in an application

This option means you must write awrapper Java program that runs SymmetricDS. Y ou would
probably use Jetty web server, which is also embeddable. Y ou could bring up an embedded
database like Derby or H2. Y ou could configure the web server, database, or SymmetricDS to do
whatever you needed, but it's also the most work of the three options discussed thus far.

» Grails Application

A Grails SymmetricDS plugin is provided at the default Grails plugin site. This option ends up
being a WAR deployment, but alows for the use of the Grails SDK for configuring and building
the deployment. The plugin also provides Gorm (Hibernate) access to many of the core database
tables.

The deployment model you choose depends on how much flexibility you need versus how easy you want
it to be. Both Jetty and Tomcat are excellent, scalable web servers that compete with each other and have
great performance. Most people choose either the Standalone or Web Archive with Tomcat 5.5 or 6.
Deploying to Tomcat is a good middle-of-the-road decision that requires alittle more work for more
flexibility.

Next, we will go into alittle more detail on the first three deployment options listed above.

5.1.1. Web Archive

As aweb application archive, aWAR is deployed to an application server, such as Tomcat, Jetty, or

Symmetric DSv2.0 42

http://grails.org/plugin/symmetricds

Deployment

JBoss. The structure of the archive will have aweb. xni file in the vies- 1 NF folder, an appropriately
configured synmmet ri c. properties filein the ves- 1 NF/ ¢l asses folder, and the required JAR filesin the
VEB- | NF/ | i b folder.

= rj'- symmektric, war
=l |L3) WEE-INF 2| web, xml
) classes u syrmmekric, properties
) lib =] asm-1.5.3.jar

cqlib-2.1_3.jar

cammans-beanutils-1,7,0.jar

A war file can be generated using the standalone installation's sym utility and the --create-war option. The
command requires the name of the war file to generate. It essentially packages up the web directory, the
conf directory and includes an optional propertiesfile. Note that if a propertiesfileisincluded, it will be
copied to WEB-INF/classes/symmetric.properties. Thisis the same location conf/symmetric.properties
would have been copied to. The generated war distribution uses the same web.xml as the standalone
deployment.

.[bin/sym -p my-symmetric-ds.properties --create-war /some/path/to/symmetric-ds.war

The web. base. servl et . pat h property insymetric. properties can be set if the SymmetricServlet needs to
coexist with other Servlets. By default, the value is blank. If you set it to, say, web. base. ser vl et . pat h=sync
for exmaple, registration.url would bent t p://server:port/sync.

5.1.2. Standalone

A standalone service can use the symcommand line options to start a server. An embedded instance of
Jetty is used to service web requests for all the servlets.

/[symretric/ bin/sym--properties root.properties --port 8080 --server

This example starts the SymmetricDS server on port 8080 with the startup properties found in the
root . properties file.

5.1.3. Embedded

A Java application with the SymmetricDS Java Archive (JAR) library on its classpath can use the
Symmet ri cvebSer ver tO Start the server.

i mport org.junpm nd. symmetric. Symmetri cWebSer ver ;

public class StartSymetri cEngi ne {

Symmetric DSv2.0 43

Deployment

Start an engine that is configured by two properties files. One is
packaged with the application and contains overridden properties that are
specific to the application. The other is found in the application's
working directory. It can be used to setup environnent specific

* properties.

*/

public static void main(String[] args) throws Exception {

* X 3k X X

Symmet ri cWebServer node = new Synmetri cWebSer ver (
"cl asspath:// nmy-application. properties");

/[l this will create the database, sync triggers, start jobs running
node. start (8080) ;

/1 this will stop the node
node. st op();

This example starts the SymmetricDS server on port 8080 with startup properies found in two locations.
Thefirst file, ny-appl i cation. properti es, iS packaged in the application to provide properties that override
the SymmetricDS default values.

5.2. Running as a Windows Service

SymmetricDS uses the Java Service Wrapper product from Tanuki Software to run in the background as a
Windows system service. The Java Service Wrapper executable is named sym ser vi ce. exe SO it can be
easily identified from alist of running processes. To install the service, use the provided script:

bin\install _service. bat

The service configuration isfound in conf/ sym servi ce. conf . Edit thisfileif you want to change the
default port number (8080), initial memory size (256 MB), log file size (10 MB), or other settings. When
started, the server will look in the cont directory for the synmetric. properties fileand thei ogsj . xni file.
Logging for standard out, error, and application are written to the 1 ogs directory.

Most configuration changes do not require the service to be re-installed. To un-install the service, use the
provided script:

bi n\uni nstal | _servi ce. bat

Use the net command to start and stop the service:

net start symmretric
net stop symetric

Symmetric DSv2.0 44

http://wrapper.tanukisoftware.org/

Deployment

5.3. Running as a Nix Service

SymmetricDS uses the Java Service Wrapper product from Tanuki Software to run in the background as a
Unix system service. The Java Service Wrapper executable is named sym ser vi ce SO it can be easily
identified from alist of running processes. The service configuration isfound in conf/ sym ser vi ce. conf .
Edit thisfile if you want to change the default port number (8080), initial memory size (256 MB), log file
size (10 MB), or other settings.

Aninit script is provided to work with standard Unix run configuration levels. The sym service.initd file
follows the Linux Standard Base specification, which should work on many systems, including Fedora
and Debian-based distributions. To install the script, copy it into the system init directory:

cp bin/symservice.initd /etc/init.d/symservice

Edit the init script to set the SYM_HOME variable to the directory where SymmetricDS is located. The
init script callsthe sym servi ce executable.

To enable the service to run automatically when the system is started:

/ sbin/chkconfig --add sym service

To disable the service from running automatically:

/ sbin/ chkconfig --del sym service

On Suse Linux install the service by caling:
fusr/lib/lsb/install _initd sym service
Remove the service by calling:

fusr/lib/lsb/remove initd sym service

Use the service command to start, stop, and query the status of the service:

/ sbin/service symservice start
/ sbin/service symservice stop
/ sbin/service sym service status

Alternatively, call the init.d script directly:

[etc/init.d/symservice start
/[etc/init.d/ symservice stop
/[etc/init.d/ symservice status

Symmetric DSv2.0 45

http://wrapper.tanukisoftware.org/

Deployment

5.4. Clustering

A single SymmetricDS node may be clustered across a series of instances, creating aweb farm. A node
might be clustered to provide load balancing and failover, for example.

When clustered, a hardware load balancer is typically used to round robin client requests to the cluster.
The load balancer should be configured for statel ess connections. Also, the sync. ur1 (discussed in
Section 4.1, Node Properties (p. 23)) SymmetricDS property should be set to the URL of the load
balancer.

If the cluster will be running any of the SymmetricDS jobs, then the ci ust er . 1 ock. enabl ed property should
be set to t rue. By setting this property to true, SymmetricDS will use arow in the LOCK table asa
semaphore to make sure that only one instance at atime runs ajob. When alock is acquired, arow is
updated in the lock table with the time of the lock and the server id of the locking job. Thelock timeis set
back to null when the job is finished running. Another instance of SymmetricDS cannot aquire alock

until the locking instance (according to the server id) releases the lock. If an instance is terminated while
thelock is still held, an instance with the same server id is allowed to reaquire the lock. If the locking
instance remains down, the lock can be broken after a period of time, specified by the
cluster.lock.timeout.ns property, has expired. Note that if thejob is still running and the lock expires,
two jobs could be running at the same time which could cause database deadl ocks.

By default, the locking server id is the hostname of the server. If two clustered instances are running on
the same server, then theci uster. server. i d property may be set to indicate the name that the instance
should use for its server id.

When deploying SymmetricDS to an application server like Tomcat or JBoss, no special session
clustering needs to be configured for the application server.

5.5. Encrypted Passwords

The db. user and db. password properties Will accept encrypted text, which protects against casual
observation. Thetext is prefixed with enc: to indicate that it is encrypted. To encrypt text, use the
following command:

Sym -e secr et

Thetext is encrypted by the cipher defined as alias "sym.secret” in the Java keystore. The keystoreis
specified by the "sym.keystore.file" system property, which defaultsto security/ keystore. If acipheris
not found, a default cipher using Triple DES with arandom password is generated.

5.6. Secure Transport

By specifying the "https" protocol for aURL, SymmetricDS will communicate over Secure Sockets
Layer (SSL) for an encrypted transport. The following properties need to be set with "https® in the URL:

Symmetric DSv2.0 46

Deployment

sync.url
Thisisthe URL of the current node, so if you want to force other nodes to communicate over SSL
with this node, you specify "https' in the URL.

registration.url
Thisisthe URL where the node will connect for registration when it first starts up. To protect the
registration with SSL, you specify "https" in the URL.

For incoming HTTPS connections, SymmetricDS depends on the webserver where it is deployed, so the
webserver must be configured for HTTPS. As a standalone deployment, the "sym" launcher command
provides options for enabling HTTPS support.

5.6.1. Sym Launcher

The "sym" launch command uses Jetty as an embedded web server. Using command line options, the web
server can betold to listen for HTTP, HTTPS, or both.

sym --port 8080 --server
Sym --secure-port 8443 --secur e-server

sym --port 8080 --secur e-port 8443 --mixed-ser ver

5.6.2. Tomcat

If you deploy SymmetricDS to Apache Tomcat, it can be secured by editing the
TOMCAT_HOME/ conf / server . xmi configuration file. Thereis already aline that can be uncommented and
changed to the following:

<Connect or port="8443" protocol ="HTTP/ 1. 1" SSLEnabl ed="t r ue"
maxThr eads="150" schenme="htt ps" secure="true"
client Aut h="fal se" ssl Protocol ="TLS"
keystoreFil e="/symetric-ds-1. x.x/security/keystore" />

5.6.3. Keystores

When SymmetricDS connects to a URL with HTTPS, Java checks the validity of the certificate using the
built-in trusted keystore located at JRE_HOME/ 1§ b/ security/ cacerts. The"sym" launcher command
overrides the trusted keystore to use its own trusted keystore instead, which islocated at securi ty/ cacerts.
This keystore contains the certificate aliased as "sym" for use in testing and easing deployments. The
trusted keystore can be overridden by specifying thej avax. net . ssl . trust St ore System property.

When SymmetricDS isrun as a secure server with the "sym" launcher, it accepts incoming requests using
the key installed in the keystore located at securi t y/ keyst ore. The default key is provided for convenience
of testing, but should be re-generated for security.

Symmetric DSv2.0 47

Deployment

5.6.4. Generating Keys

To generate new keys and install a server certificate, use the following steps:

1. Open acommand prompt and navigate to the securi ty subdirectory of your SymmetricDS

installation.

2. Deletetheold key pair and certificate.
keytool -keystore keystore -delete -alias sym
keytool -keystore cacerts -delete -alias sym

Enter keystore password: changeit

3. Generate anew key pair.

keytool -keystore keystore -alias sym -genkey -keyalg RSA -validity 10950

Enter keystore password: changeit
What is your first and | ast nanme?
[Unknown]: | ocal host
VWhat is the name of your organi zational unit?
[Unknown]: Symmetri cDS
What is the name of your organi zation?
[Unknown]: JunpM nd
VWhat is the nanme of your City or Locality?
[Unknown] :
What is the nane of your State or Province?
[Unknown] :
VWhat is the two-letter country code for this unit?
[Unknown] :
I's CN=l ocal host, OU=SymmetricDS, O=JunpM nd, L=Unknown, ST=Unknown, C=Unknown
correct?
[no]: vyes

Enter key password for <synp
(RETURN i f same as keystore password):

4. Export the certificate from the private keystore.
keytool -keystore keystore -export -alias sym -rfc -file sym.cer
5. Install the certificate in the trusted keystore.

keytool -keystore cacerts-import -alias sym -file sym.cer

5.7. Basic Authentication

Symmetric DSv2.0

48

Deployment

SymmetricDS supports basic authentication for client and server nodes. To configure a client node to use
basic authentication when communicating with a server node, specify the following startup parameters:

http.basic.auth.username
username for client node basic authentication. [Default:]

http.basic.auth.password
password for client node basic authentication. [Default: |

The SymmetricDS Standalone and Embedded Server also support basic authentication. Thisfeatureis
enabled by specifying the basic authentication username and password using the following startup
parameters:

embedded.webser ver .basic.auth.username
username for basic authentication for an embedded server or standalone server node. [Default: |

embedded.webser ver .basic.auth.password

password for basic authentication for an embedded server or standalone server node. [Default: |

If the server node is deployed to Tomcat or another application server asaWAR or EAR file, then basic
authentication is setup with the standard configuration in the WEB.xml file.

5.8. IP Filtering

SymmetricDS supports restricting | P addresses of clients that are allowed to connect to servers. The
following filtering functionality is supported for |Pv4 addresses (IPv6 is currently not supported).

* CIDR (Classless Inter-Domain Routing) notation
» Wildcarding
» Range

e Literd

5.8.1. CIDR Filter

Classless Inter-Domain Routing, CIDR, notation is the preferred notation for restricting client
connectionsto a server node in a SymmetricDS tree. It isacommonly utilized format for |P address
filtering. Many established frameworks, such as Apache, utilize this notation for filtering | P addresses.

The basis for implementing CIDR notation is defining the I P address block and significant bits of that
address that are to be checked. The filter must be awell formatted IP address with aending with a*/”
followed by a numeric value between 0 and 32. The use of “0” denotesthat all IP addresses are allowed
(inwhich caseit'sfairly pointless to enable the filtering framework), and “32” signifies only the
precesding | P address would be authorized. In the latter case, a Literal Filter string would be

Symmetric DSv2.0 49

http://www.ietf.org/rfc/rfc1519.txt
http://httpd.apache.org/docs/1.3/mod/mod_access.html

Deployment

recommended asit is significantly more obvious that only that addressis allowed.

Example5.1. CIDR Filter String Definition in symmetric.properties

#

Filter string definition to restrict connecting client
| P addresses

#

ip.filters=10.10.4.32/27, 10.5.0.0/16

5.8.2. Literal Filter

Literal filter definitions are just that: they define asingle |P address that is authorized to connect to the
server. The only requirement is that the filter string is a complete, well formatted 1P address.

5.8.3. Wildcarding

The wildcard notation allows all values for a specific piece of an IP addressto be valid (0 to 255 for 1Pv4
addresses). Thisis denoted with a“*” within the specific piece (octet for IPv4) of an IP address. The
wildcard character isthe only allowable character within that piece of the address (no other characters
included whitespace).

Wildcard filters may be combined with Range Filters. They may NOT be combined with CIDR Filter.

Example 5.2. Wildcard Filter String Definition in symmetric.properties

#

Filter string definition to restrict connecting client
| P addresses

#

ip.filters=10.10.*.40

5.8.4. Range Filters

Range filter definitions allow for a numeric range to be specified within an addressfilter. A range must be
avalid numeric range for an piece of an IP address (i.e. an octet in I1Pv4). The range definition must be in
the form:

Example 5.3. Filter String Definition in symmetric.properties

Symmetric DSv2.0 50

Deployment

#

Filter string definition to restrict connecting client
| P addresses

#

ip.filters=10.10.40-20. 200-1

5.8.5. Inner workings

Filter strings are compiled on startup, so the hit (although very small) of compiling the authorizersis
incurred only once. Once compiled each request is passed through the chain of authorizers until either a
authorization is passed or the chain is exhausted. In the latter case the request is denied and a protocol
specific response is sent to the client. In the case of HTTP this would be a response code of 401
(FORBIDDEN).

5.8.6. Configuration

Configuring IP filter strings is done through defining the following property in the SymmetricDS
configuration (one of the symmetric .propertiesfiles). One need only to definetheip.filter property and
assign acomma*,” delimited string of filter tokensto provide to the filter framework.

Example 5.4. Filter String Definition in symmetric.properties

#

Filter string definition to restrict connecting client
| P addresses

#

ip.filters=10.10.4.32/27, 100.50-40.10-5.*, 35.58.124.89

f | mportant

Note, that there is obvious overlap between the some of the filtering notation, and hence,
functionality. The Wildcarding and Range Filters functionality exists to provide workarounds
for scenarios where CIDR Filter notation and Literal Filter will not suffice.

! Warning

Take carein defining your filter string asit is possible to overlap filters. Also, as with the
definition of any other property in the SymmetricDS configuration, if the property is defined
in multiple properties files the property file that isread in last will override any previousfilter
string definitions.

Symmetric DSv2.0 51

Deployment

Symmetric DSv2.0

52

Chapter 6. Extending SymmetricDS

SymmetricDS may be extended via a plug-in like architecture where extension point interfaces may be
implemented by a custom class and registered with the synchronization engine. All supported extension
points extend the | ExtensionPoint interface. The currently available extension points are documented in
the following sections.

When the synchronization engine starts up, a Spring post processor searches the Spring
ApplicationContext for any registered classes which implement |ExtensionPoint. An | ExtensionPoint
designates whether it should be auto registered or not. If the extension point isto be auto registered then
the post processor registers the known interface with the appropriate service.

The INodeGroupExtensionPoint interface may be optionally implemented to designate that auto
registered extension points should only be auto registered with specific node groups.

/**

* Only apply this extension point to the 'root' node group.
*/

public String[] getNodeG oupl dsToAppl yTo() {
return new String[] { "root" };
}

SymmetricDS will look for Spring configured extensions in the application Classpath by importing any
Spring XML configuration files found matching the following pattern:

META- | NF/ ser vi ces/ symet ri c-*-ext . xni . When packaged in ajar file the veTa- 1 NF directory should be at
theroot of the jar file. When packaged in awar file, the MeTA- 1 NF directory should bein the

VEB- | NF/ cl asses directory.

6.1. IParameterFilter

Parameter values can be specified in code using a parameter filter. Note that there can be only one
parameter filter per engine instance. The | ParameterFilter replaces the deprecated | RuntimeConfig from
prior releases.

public class MyParaneterFilter
i npl ements | ParaneterFilter, | NodeG oupExtensi onPoint {

/**

* Only apply this filter to stores
*/

public String[] getNodeG oupl dsToAppl yTo() {
return new String[] { "store" };
}

public String filterParameter(String key, String value) {
/1 1ook up a store nunber froman already existing properties file.
i f (key.equal s(ParaneterConstants. EXTERNAL I D)) {
return StoreProperties. getStoreProperties().
get Property(StoreProperties. STORE NUMBER) ;

return val ue;

Symmetric DSv2.0 53

Extending SymmetricDS

}

publi c bool ean i sAut oRegister() {
return true;
}

6.2. IDataLoaderFilter

Data can befiltered asit is loaded into the target database. It can also be filtered when it is extracted from
the source database. As datais|oaded into the target database, afilter can change the datain a column or
save it somewhere else. It can also specify by the return value of the function call that the data loader
should continue on and load the data (by returning true) or ignore it (by returning false). One possible use
of the filter might be to route credit card data to a secure database and blank it out asit loads into a
less-restricted reporting database.

An | DataloaderContext is passed to each of the callback methods. A new context is created for each
synchronization. The context provides methods to lookup column indexes by column name, get table
meta data, and access to old dataif the sync_col um_I evel flag isenabled. The context also provides a
means to share data during a synchronization between different rows of datathat are committed in a
database transaction and are in the same channel. It does so by providing a context cache which can be
populated by the extension point.

Many times the | Datal_oaderFilter will be combined with the IBatchListener. The XmlPublisherFilter (in
the org. j unpni nd. symmet ri c. ext package) is agood example of using the combination of the two extension
pointsin order to create XML messages to be published to IMS.

A class implementing the | Datal_oaderFilter interface is injected onto the Datal oaderService in order to
receive callbacks when datais inserted, updated, or deleted.

public MyFilter inplements |DatalLoaderFilter {

publ i c bool ean i sAutoRegister() {
return true;
}

public boolean filterlnsert (I Dataloader Context context,
String[] columVal ues) {
return true;

}

public bool ean filterUpdate(l DatalLoader Context context,
String[] colummVal ues, String[] keyValues) {
return true;

}

public void filterDel ete(l DatalLoader Cont ext context,
String[] keyVal ues) {
return true;

Symmetric DSv2.0 54

Extending SymmetricDS

Thefilter classis specified as a Spring-managed bean. A custom Spring XML fileis specified as follows
in ajar al META- | NF/ servi ces/ symmetric-nmyfilter-ext.xn .

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: // ww. spri ngf ranmewor k. or g/ scherma/ cont ext "
Xsi : schermalLocati on="htt p: //wwv. spri ngf ranewor k. or g/ scherma/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframewor k. or g/ schena/ cont ext
http://ww. springframewor k. or g/ schenma/ cont ext/ spri ng- cont ext - 3. 0. xsd" >

<bean id="nyFilter" class="com nydomain. MyFilter"/>

</ beans>

6.3. ITableColumnFilter

Implement this extension point to filter out specific columns from use by the dataloader. Only one
column filter may be added per target table.

6.4. IBatchListener

This extension point is called whenever a batch has completed loading but before the transaction has
committed.

6.5. IAcknowledgeEventListener

Implement this extension point to receive callback events when a batch is acknowledged. The callback for
this listener happens at the point of extraction.

6.6. IReloadListener

Implement this extension point to listen in and take action before or after areload is requested for a Node.
The callback for this listener happens at the point of extraction.

6.7. |IExtractorFilter

This extension point is called after data has been extracted, but before it has been streamed. It has the
ability to inspect each row of data to take some action and indicate, if necessary, that the row should not
be streamed.

Symmetric DSv2.0 55

Extending SymmetricDS

6.8. ISyncUrlExtension

This extension point is used to select an appropriate URL based on the URI provided in the sync_ur
column of sym node.

To use this extension point configure the sync_url for a node with the protocol of ext://beanName. The
beanName is the name you give the extension point in the extension xml file.

6.9. INodeldGenerator

This extension point allows SymmetricDS users to implement their own algorithms for how node ids and
passwords are generated or selected during the registration process. There may be only one node
generator per SymmetricDS instance.

6.10. ITriggerCreationListener

Implement this extension point to get status callbacks during trigger creation.

6.11. IBatchAlgorithm

Implement this extension point and set the name of the Spring bean on the batch_algorithm column of the
Channel table to use. This extension point gives fine grained control over how a channel is batched.

6.12. IDataRouter

Implement this extension point and set the name of the Spring bean on the router_type column of the
Router table to use. This extension point gives the ability to programatically decide which nodes data
should be routed to.

6.13. IHeartbeatListener

Implement this extension point to get callbacks during the heartbeat job.

6.14. |I0fflineClientListener

Implement this extension point to get callbacks for offline events on client nodes.

6.15. I0fflineServerListener

Symmetric DSv2.0 56

Extending SymmetricDS

Implement this extension point to get callbacks for offline events detected on a server node during
monitoring of client nodes.

6.16. INodePasswordFilter

Implement this extension point to intercept the saving and rendering of the node password.

6.17. IServiletExtension

Implement this extension point to allow additional Servlets to be registered with SymmetricDS. Thisis
probably only useful if SymmetricDS is running in standalone or embedded mode.

Symmetric DSv2.0

57

Chapter 7. Administration

7.1. Changing Triggers

A trigger row may be updated using SQL to change a synchronization definition. SymmetricDS will look
for changes each night or whenever the Sync Triggers Job is run (see below). For example, a change to
place the table pri ce_changes into the price channel would be accomplished with the following statement:

updat e SYM TRI GGER

set channel id = 'price',

| ast _update by = "jsmth',

| ast _update_time = current _timestanp
where source_tabl e nane = 'price_changes';

All configuration should be managed centrally at the registration node. If enabled, configuration changes
will be synchronized out to client nodes. When trigger changes reach the client nodes the Sync Triggers
Job will run automatically.

Centrally, the trigger changes will not take effect until the Sync Triggers Job runs. Instead of waiting for
the Sync Triggers Job to run overnight after making a Trigger change, you can invoke the syncTriggers()
method over IMX or simply restart the SymmetricDS server.

7.2. Changing Configuration

The configuration of your system as defined in the sym * tables may be modified at runtime. By default,
any changes made to the sym * tables (with the exception of sym node) should be made at the registration
server. The changes will be synchronized out to the leaf nodes by SymmetricDS triggers that are
automatically created on the tables.

If this behavior is not desired, the feature can be turned off using a parameter. Custom triggers may be
added to the sym * tables when the auto syncing feature is disabled.

7.3. Logging Configuration

The standalone SymmetricDS installation uses Log4J for logging. The configuration fileis
conf/log4j.xm . Thelogs4j . xn file has hints asto what logging can be enabled for useful, finer-grained

logging.

SymmetricDS proxies all of its logging through Commons L ogging. When deploying to an application
server, if Log4Jis not being leveraged, then the general rules for for Commons Logging apply.

7.4. Java Management Extensions

Symmetric DSv2.0 58

http://logging.apache.org/log4j/1.2/index.html
http://commons.apache.org/logging/

Administration

Monitoring and administrative operations can be performed using Java Management Extensions (JM X).
SymmetricDS uses MX4J to expose IMX attributes and operations that can be accessed from the built-in
web console, Java's jconsole, or an application server. By default, the web management console can be
opened from the following address:

http://| ocal host: 31416/

Using the Java jconsole command, SymmetricDS islisted as alocal process named SymmetricLauncher.
In jconsole, SymmetricDS appears under the M Beans tab under then name defined by the engi ne. nane
property. The default value is SymmetricDS.

The management interfaces under SymmetricDS are organized as follows:

* Node - administrative operations

Incoming - statistics about incoming batches
» Outgoing - statistics about outgoing batches

» Parameters - accessto properties set through the parameter service

Notifications - setting thresholds and receiving notifications

7.5. Temporary Files

SymmetricDS creates temporary extraction and data load files with the CSV payload of a synchronization
when the value of thestreamto. file. threshol d. bytes SymmetricDS property has been reached. Before
reaching the threshold, files are streamed to/from memory. The default threshold value is 32,767 bytes.
This feature may be turned off by setting the streamto. file. enabl ed property to false.

SymmetricDS creates these temporary filesin the directory specified by thej ava. i o. t mpdi r Java System
property. When SymmmetricDS starts up, stranded temporary files are aways cleaned up. Files will only
be stranded if the SymmetricDS engine isforce killed.

The location of the temporary directory may be changed by setting the Java System property passed into
the Java program at startup. For example,

-Dj ava. i o.tmpdi r =/ hore/ . synmetri cds/tnp

7.6. Database Purging

Purging is the act of cleaning up captured data that is no longer needed in SymmetricDS's runtime tables.
Datais purged through delete statements by the Purge Job. Only data that has been successfully
synchronized will be purged. Purged tables include:

Symmetric DSv2.0 59

Administration

DATA

DATA_EVENT

OUTGOING_BATCH

INCOMING_BATCH

i = ow

The purge job is enabled by the start. purge. j ob SymmetricDS property. The job runs periodically
according to thej ob. purge. peri od. ti me. ns property. The default period isto run every ten minutes.

Two retention period properties indicate how much history SymmetricDS will retain before purging. The
purge. retention. m nut es property indicates the period of history to keep for synchronization tables. The
default valueis 5 days. Thestatistic. retention. ni nut es property indicates the period of history to keep
for statistics. The default valueis also 5 days.

The purge properties should be adjusted according to how much datais flowing through the system and
the amount of storage space the database has. For an initial deployment it is recommended that the purge
properties be kept at the defaults, sinceit is often helpful to be able to look at the captured datain order to
triage problems and profile the synchronization patterns. When scaling up to more nodes, it is
recomended that the purge parameters be scaled back to 24 hours or |ess.

7.7. Debugging Issues
7.8. Querying for Errors
7.9. Fixing Errors

7.10. Measuring Performance

Symmetric DSv2.0 60

Appendix A. Data Model

What follows is the complete SymmetricDS data model. Note that all tables are prepended with a
configurable prefix so that multiple instances of SymmetricDS may coexist in the same database. The
default prefix issym .

SymmetricDS configuration is entered by the user into the data model to control the behavior of what
datais synchronized to which nodes.

Mode Group Link Node Identity
w e
L =]
Node Group + 4 Node : 4 Node Channel Control
- —— w
Wode Security Channel

—Eﬂ—q TriggerRouter F—|— Trigger F—

Figure A.1l. Configuration Data M odel

At runtime, the configuration is used to capture data changes and route them to nodes. The data changes

are placed together in asingle unit called a batch that can be loaded by another node. Outgoing batches

are delivered to nodes and acknowledged. Incoming batches are received and loaded. History is recorded

for batch status changes and statistics.

Symmetric DSv2.0

61

Data Model

Outgoing Batch

Data Event T

FalP a
T

Mode Incoming Batch

Trigger Hist

Channel

Trigger

Figure A.2. Runtime Data M odel

A.1. NODE

Representation of an instance of SymmetricDS that synchronizes data with one or more additional nodes.
Each node has a unique identifier (nodeld) that is used when communicating, as well as a domain-specific
identifier (externalld) that provides context within the local system.

Table A.1. NODE

Name

NODE_ID

NODE_GROUP _ID

EXTERNAL_ID

Type/ Size Default PK | not
FK null

VARCHAR PK X

(50)

VARCHAR X

(50)

VARCHAR X

(50)

Description

A unique identifier for anode.

The node group that this node belongs to, such
as 'store'.

A domain-specific identifier for context within
the local system. For example, the retail store
number.

SYNC_ENABLED

INTEGER (1) O

Indicates whether this node should be sent
synchronization. Disabled nodes are ignored by
the triggers, so no entries are made in
data_event for the node.

SYNC_URL VARCHAR The URL to contact the node for
(255) synchronization.
SCHEMA_VERSION VARCHAR The version of the database schema this node
(50) manages. Useful for specifying synchronization
by version.
SYMMETRIC _VERSION VARCHAR The version of SymmetricDS running at this

Symmetric DSv2.0

62

Data Model

Name Type/ Size Default PK | not Description
FK | null
(50) node.
DATABASE TYPE VARCHAR The database product name at this node as
(50) reported by JDBC.
DATABASE VERSION VARCHAR The database product version at this node as
(50) reported by JDBC.

HEARTBEAT_TIME TIMESTAMP The last timestamp when the node sent a
heartbeat, which is attempted every ten minutes
by default.

TIMEZONE_OFFSET VARCHAR The timezone offset in RFC822 format at the

(6) time of the last heartbeat.

BATCH_TO_SEND_COUNT INTEGER 0 The number of outgoing batches that have not
yet been sent. Thisfield is updated as part of
the heartbeat job.

BATCH_IN_ERROR_COUNT INTEGER 0 The number of outgoing batchesthat arein
error at thisnode. Thisfield is updated as part
of the heartbest job.

CREATED_AT_NODE_ID VARCHAR The node _id of the node where this node was

(50) created. Thisistypicaly filled automatically

A.2. NODE_SECURITY

with the node_id found in node_identity where
registration was opened for the node.

Security features like node passwords and open registration flag are stored in the node_security table.

Table A.2. NODE_SECURITY

Name Type/ Size Default PK | not Description
FK null
NODE_ID VARCHAR PK X | Uniqueidentifier for anode.
(50)
NODE_PASSWORD VARCHAR X | The password used by the node to prove its
(50) identity during synchronization.

REGISTRATION_ENABLED

REGISTRATION_TIME

INTEGER (1) O

TIMESTAMP

Indicates whether registration is open for this
node. Re-registration may be forced for a node
if thisis set back to '1' in a parent database for
the node_id that should be re-registred.

The timestamp when this node was last
registered.

INITIAL_LOAD_ENABLED

INITIAL_LOAD_TIME

INTEGER (1) O

TIMESTAMP

Indicates whether an initial load will be sent to
this node.

The timestamp when this node started the initial

Symmetric DSv2.0

63

Data Model

Name Type/ Size Default PK | not Description
FK | null
load.
CREATED_AT_NODE_ID VARCHAR X | The node id of the node where this node was
(50) created. Thisistypicaly filled automatically

with the node_id found in node_identity where
registration was opened for the node.

A.3. NODE_IDENTITY

After registration, thistable will have one row representing the identity of the node. For aroot node, the
row is entered by the user.

Table A.3. NODE_IDENTITY

Name Type/ Size Default PK | not Description
FK null
NODE_ID VARCHAR PK X | Uniqueidentifier for anode.
(50)

A.4. NODE_GROUP

A category of Nodes that synchronizes data with one or more NodeGroups. A common use of
NodeGroup isto describe alevel in a hierarchy of data synchronization.

Table A.4. NODE_GROUP

Name Type/ Size Default PK | not Description
FK | null
NODE_GROUP_ID VARCHAR PK X | Uniqueidentifier for anode group, usualy
(50) named something meaningful, like 'store’ or
‘warehouse'.
DESCRIPTION VARCHAR A description of this node group.
(255)

A.5. NODE_GROUP_LINK

A source node_group sends its data updates to atarget NodeGroup using a pull, push, or custom
technique.

Symmetric DSv2.0 64

Data Model

Table A.5. NODE_GROUP_LINK

Name Type/ Size Default PK | not Description
FK null
SOURCE_NODE_GROUP_ID VARCHAR PK X | The node group where data changes should be
(50) captured.
TARGET_NODE_GROUP_ID VARCHAR PK | X | Thenode group where data changes will be
(50) sent.
DATA_EVENT_ACTION CHAR (1) W X | The natification scheme used to send data

A.6. NODE_HOST

changes to the target node group. (P = Push, W
= Wait for Pull)

Representation of an physical workstation or server that is hosting the SymmetricDS software. In a
clustered environment there may be more than one entry per node in this table.

Table A.6. NODE_HOST

Name Type/ Size Default PK | not Description
FK null
NODE_ID VARCHAR PK X | Auniqueidentifier for anode.
(50)
HOST_NAME VARCHAR PK X The host name of aworkstation or server. If
(255) more than one instance of SymmetricDS runs
on the same server, then this value can be a
‘server id' specified by
-Druntime.symmetric.cluster.server.id
IP_ADDRESS VARCHAR Theip address for the host.
(50)
OS_USER VARCHAR The user SymmetricDS is running under
(50)
OS NAME VARCHAR The name of the OS
(50)
OS ARCH VARCHAR The hardware architecture of the OS
(50)
OS_VERSION VARCHAR The version of the OS
(50)
AVAILABLE_PROCESSORS INTEGER 0 The number of processors available to use.
FREE MEMORY_BYTES BIGINT 0 The amount of free memory available to the
JVM.
TOTAL_MEMORY_BYTES BIGINT 0 The amount of total memory available to the

JVM.

Symmetric DSv2.0

65

Data Model

Name Type/ Size Default PK | not Description
FK | null
MAX_MEMORY_BYTES BIGINT 0 The max amount of memory available to the
JVM.
JAVA VERSION VARCHAR The version of javathat SymmetricDSis
(50) running as.
JAVA_VENDOR VARCHAR The vendor of javathat SymmetricDS is
(255) running as.
SYMMETRIC _VERSION VARCHAR The version of SymmetricDS running at this
(50) node.
TIMEZONE_OFFSET VARCHAR The timezone offset in RFC822 format at the
(6) time of the last heartbeat.
HEARTBEAT_TIME TIMESTAMP The last timestamp when the node sent a
heartbeat, which is attempted every ten minutes
by default.
LAST_RESTART_TIME TIMESTAMP X | Timestamp when this instance was last
restarted.
CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.

A.7. NODE_HOST_CHANNEL_STATS

TableA.7. NODE_HOST_CHANNEL_STATS

Name Type/ Size Default PK | not Description
FK null
NODE_ID VARCHAR PK X | Auniqueidentifier for anode.
(50)
HOST_NAME VARCHAR PK X The host name of aworkstation or server. If
(255) more than one instance of SymmetricDS runs
on the same server, then this value can be a
‘server id' specified by
-Druntime.symmetric.cluster.server.id
CHANNEL _ID VARCHAR PK X | Thechannel_id of the channdl that data changes
(20 will flow through.
START_TIME TIMESTAMP PK X
END_TIME TIMESTAMP PK X
DATA_ROUTED BIGINT 0 Indicate the number of data rows that have been
routed during this period.
DATA_UNROUTED BIGINT 0
DATA_EVENT_INSERTED BIGINT 0 Indicate the number of data rows that have been
routed during this period.
DATA_EXTRACTED BIGINT 0

Symmetric DSv2.0

66

Data Model

Name Type/ Size Default PK | not Description
FK null
DATA_BYTES EXTRACTED BIGINT 0
DATA_EXTRACTED_ERRORS BIGINT 0
DATA_BYTES SENT BIGINT 0
DATA_SENT BIGINT 0
DATA_SENT_ERRORS BIGINT 0
DATA_LOADED BIGINT 0
DATA_BYTES LOADED BIGINT 0
DATA_LOADED_ERRORS BIGINT 0

A.8. CHANNEL

This table represents a category of datathat can be synchronized independently of other channels.
Channels allow control over the type of dataflowing and prevents one type of synchronization from

contending with another.

Table A.8. CHANNEL

Name Type/ Size Default PK | not Description
FK | null
CHANNEL _ID VARCHAR PK X | A uniqueidentifer, usually named something
(20 meaningful, like 'sales’ or 'inventory'.

PROCESSING_ORDER INTEGER 1 X Order of sequence to process channel data.

MAX_BATCH_SIZE INTEGER 1000 X | The maximum number of Data Events to
process within a batch for this channel.

MAX_BATCH_TO_SEND INTEGER 60 X The maximum number of batchesto send
during a'synchronization' between two nodes.
A 'synchronization' is equivalent to a push or a
pull. If there are 12 batches ready to be sent for
achannel and max_batch to_send isequal to
10, then only the first 10 batches will be sent.

MAX_DATA_TO ROUTE INTEGER 100000 X | The maximum number of data rows to route for
achannd at atime.

EXTRACT_PERIOD_MILLIS INTEGER 0 X The minimum number of milliseconds allowed
between attempts to extract data for targeted at
anode_id.

ENABLED INTEGER (1) 1 X | Indicates whether channel is enabled or not.

USE OLD DATA_TO ROUTE INTEGER (1) 1 X | Indicates whether to read the old data during
routing.

USE ROW _DATA_TO ROUTE | INTEGER(1) 1 X Indicates whether to read the row data during

routing.

Symmetric DSv2.0

67

Data Model

Name Type/ Size Default PK | not Description
FK | null

USE PK_DATA_TO ROUTE INTEGER (1) 1 X | Indicates whether to read the pk data during
routing.

CONTAINS BIG _LOB INTEGER (1) O X | Provides SymmetricDS a hint asto whether this
channel will contain big lobs data. Some
databases have shortcuts that SymmetricDS can
take advantage of if it knows that the lob
columnsin sym_data aren't going to contain
large lobs. The definition of how big a'large’
lob iswill differ from database to database.

BATCH_ALGORITHM VARCHAR | default X | The algorithm to use when batching data on this

DESCRIPTION

(50)

VARCHAR
(255)

A.9. NODE_CHANNEL_CTL

channel. Possible values are; 'default’,
‘transactional’, and 'nontransactional’

Description on the type of datacarried in this
channel.

Used to ignore or suspend a channel. A channel that isignored will have its data_events batched and they
will immediately be marked as 'OK" without sending them. A channel that is suspended is skipped when

batching data_events.

Table A.9. NODE_CHANNEL_CTL

Name

NODE_ID

CHANNEL_ID

SUSPEND_ENABLED

IGNORE_ENABLED

LAST EXTRACT TIME

Type/ Size Default

VARCHAR
(50)

VARCHAR
(20)
INTEGER (1) 0

INTEGER (1) O

TIMESTAMP

PK
FK

PK

PK

not
null

X

Description

Unique identifier for anode.

The name of the channel _id that is being
controlled.

Indicates if this channel is suspended, which
prevents its Data Events from being batched.

Indicatesif this channel isignored, which
marksits Data Events asif they were actually
processed.

Record the last time data was extract for a node
and a channel.

A.10. NODE_GROUP_CHANNEL_WINDOW

An optional window of time for which anode group and channel will be active.

Symmetric DSv2.0

68

Data Model

Table A.10. NODE_GROUP_CHANNEL_WINDOW

Name Type/ Size Default PK | not Description
FK null
NODE_GROUP_ID VARCHAR PK X | Thenode group_id that this window appliesto.
(50)
CHANNEL _ID VARCHAR PK X | Thechannel_id that this window appliesto.
(20)
START_TIME TIME PK X | Thestart timefor the active window.
END_TIME TIME PK ' X | Theend timefor the active window. Note that
if theend_timeislessthan the start_time then
the window crosses a day boundary.
ENABLED INTEGER (1) O X Enable thiswindow. If thisis set to '0' then this

A.11. TRIGGER

window isignored.

Configures database triggers that capture changes in the database. Configuration of which triggers are
generated for which tables is stored here. Triggers are created in a node's database if the
source_node _group_id of arouter is mapped to arow in thistable.

TableA.11. TRIGGER

Name Type/ Size Default PK | not Description
FK null
TRIGGER_ID VARCHAR PK X | Uniqueidentifier for atrigger.
(50)
SOURCE_CATALOG_NAME VARCHAR Optiona name for the catal og the configured
(50) tableisin.
SOURCE_SCHEMA_NAME VARCHAR Optional name for the schema a configured
(50) tableisin.
SOURCE_TABLE_NAME VARCHAR X The name of the source table that will have a
(50) trigger installed to watch for data changes.
CHANNEL _ID VARCHAR X | The channel_id of the channel that data changes
(20 will flow through.
SYNC_ON_UPDATE INTEGER (1) 1 X Whether or not to install an update trigger.
SYNC_ON_INSERT INTEGER (1) 1 X | Whether or not to install an insert trigger.
SYNC_ON_DELETE INTEGER (1) 1 X | Whether or not to install an delete trigger.
SYNC_ON_INCOMING BATCH INTEGER (1) O X | Whether or not an incoming batch that loads

datainto thistable should cause the triggers to
capture data_events. Be careful turning thison,
because an update loop is possible.

Symmetric DSv2.0

69

Data Model

Name Type/ Size Default PK | not Description
FK | null
NAME_FOR _UPDATE TRIGGER | VARCHAR Override the default generated name for the
(50) update trigger.
NAME_FOR INSERT TRIGGER VARCHAR Override the default generated name for the
(50) insert trigger.
NAME _FOR DELETE TRIGGER | VARCHAR Override the default generated name for the
(50) delete trigger.
SYNC_ON_UPDATE_CONDITION LONGVARCHAR Specify a condition for the update trigger firing
using an expression specific to the database.
SYNC_ON_INSERT_CONDITION LONGVARCHAR Specify a condition for the insert trigger firing
using an expression specific to the database.
SYNC _ON_DELETE_CONDITION LONGVARCHAR Specify a condition for the delete trigger firing
using an expression specific to the database.
EXTERNAL_SELECT LONGVARCHAR Specify a SQL select statement that returns a
single result. It will be used in the generated
database trigger to populate the

EXTERNAL_DATA field on the data table.

TX_ID_EXPRESSION LONGVARCHAR Override the default expression for the
transaction identifier that groups the data
changes that were committed together.

EXCLUDED_COLUMN_NAMES | LONGVARCHAR Specify acomma-delimited list of columns that
should not be synchronized from this table.
CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.
LAST_UPDATE_BY VARCHAR The user who last updated this entry.
(50)
LAST_UPDATE _TIME TIMESTAMP X | Timestamp when a user last updated this entry.

Configure atype of router from one node group to another. Note that routers are mapped to triggers
through trigger_routers.

Table A.12. ROUTER

Name Type/ Size Default PK | not Description
FK null

ROUTER _ID VARCHAR PK X | Unique description of a specific router
(50)

TARGET_CATALOG_NAME VARCHAR Optional name for the catalog atarget tableis
(50) in. Only use thisif the target table is not in the

default catalog.

TARGET_SCHEMA_NAME VARCHAR Optiona name of the schema atarget table is

(50 in. On use thisif the target table is not in the

Symmetric DSv2.0 70

Data Model

Name Type/ Size Default PK | not Description
FK | null

default schema.

TARGET _TABLE NAME VARCHAR Optiona name for atarget table. Only usethis
(50) if the target table name is different than the
source.
SOURCE_NODE_GROUP_ID VARCHAR X Routers with thisnode_group_id will install
(50) triggers that are mapped to this router.
TARGET_NODE_GROUP_ID VARCHAR X | Thenode group_id for nodes to route data to.
(50) Note that routing can be further narrowed down

by the configured router_type and
router_expression.

ROUTER_TYPE VARCHAR The name of a specific type of router. Out of
(50) the box routers are 'default’,'column’,'bsh’, and
'subselect.’ Custom routers can be configured as
extension points.

ROUTER_EXPRESSION LONGVARCHAR An expression that is specific to the type of
router that is configured in router_type. See the
documentation for each router for more details.

SYNC_ON_UPDATE INTEGER (1) 1 X Flagthat indicates that this router should route
updates.

SYNC_ON_INSERT INTEGER (1) 1 X | Flagthat indicates that this router should route
inserts.

SYNC_ON_DELETE INTEGER (1) 1 X Flagthat indicates that this router should route
deletes.

CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.

LAST_UPDATE_BY VARCHAR The user who last updated this entry.

(50)
LAST_UPDATE _TIME TIMESTAMP X | Timestamp when a user last updated this entry.

A.13. TRIGGER_ROUTER

Map atrigger to arouter.

Table A.13. TRIGGER_ROUTER

Name Type/ Size Default PK | not Description
FK null
TRIGGER_ID VARCHAR PK | X | Theid of atrigger.
(50)
ROUTER_ID VARCHAR PK ' X | Theid of arouter.
(50)
INITIAL_LOAD_ORDER INTEGER 1 X | Order sequence of this table when an initial

load is sent to a node.

Symmetric DSv2.0 71

Data Model

Name Type/ Size

INITIAL_LOAD_SELECT

Default | PK

FK

LONGVARCHAR

not
null

Description

Optional expression that can be used to pair
down the data selected from atable during the
initial load process.

PING_BACK_ENABLED INTEGER (1) O X | When enabled, the node will route data that
originated from a node back to that node. This
attribute is only effective if
sync_on_incoming_batch is set to 1.

CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.

LAST _UPDATE_BY VARCHAR The user who last updated this entry.

(50)
LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.14. PARAMETER

Provides away to manage most SymmetricDS settings in the database.

Table A.14. PARAMETER

Name Type/ Size Default PK
FK

EXTERNAL_ID VARCHAR PK
(50)

NODE_GROUP_ID VARCHAR PK
(50)

PARAM_KEY VARCHAR PK
(100)

PARAM_VALUE LONGVARCHAR

not
null

X

Description

Target the parameter at a specific external id.
To target al nodes, use the value of 'ALL.

Target the parameter at a specific node group
id. To target al groups, use the value of 'ALL.

The name of the parameter.

The value of the parameter.

A.15. REGISTRATION_REDIRECT

Provides away for a centralized registration server to redirect registering nodes to their prospective

parent node in a multi-tiered deployment.

Table A.15. REGISTRATION_REDIRECT

Name Type/ Size Default PK | not Description
FK null
REGISTRANT_EXTERNAL_ID VARCHAR PK X | Mapstheexterna id of aregistration request to
(50) adifferent parent node.
REGISTRATION_NODE ID VARCHAR X | Thenode_id of the node that aregistration

Symmetric DSv2.0

72

Data Model

Name

Type/ Size

(50)

A.16. TRIGGER_HIST

Default | PK

FK

not
null

Description

reguest should be redirected to.

A history of atable's definition and the trigger used to capture data from the table. When a database
trigger captures a data change, it references atrigger_hist entry so it is possible to know which columns
the data represents. trigger _hist entries are made during the sync trigger process, which runs at each
startup, each night in the syncTriggersJob, or any time the syncTriggers() IMX method is manually
invoked. A new entry is made when atable definition or atrigger definition is changed, which causes a
database trigger to be created or rebuilt.

Table A.16. TRIGGER_HIST

Name Type/ Size Default PK | not Description
FK null
TRIGGER_HIST _ID INTEGER PK X Unique identifier for atrigger_hist entry
TRIGGER_ID VARCHAR X Unique identifier for atrigger
(50)
SOURCE_TABLE_NAME VARCHAR X The name of the source table that will have a
(50 trigger installed to watch for data changes.
SOURCE_CATALOG_NAME VARCHAR The catal og name where the source table
(50) resides.
SOURCE_SCHEMA_NAME VARCHAR The schema name where the source table
(50) resides.
NAME_FOR _UPDATE TRIGGER VARCHAR X | The name used when the insert trigger was
(50) created.
NAME_FOR_INSERT_TRIGGER A VARCHAR X The name used when the update trigger was
(50) created.
NAME_FOR DELETE TRIGGER VARCHAR X | The name used when the delete trigger was
(50) created.
TABLE_HASH BIGINT X | A hash of the table definition, used to detect
changes in the definition.
TRIGGER_ROW_HASH BIGINT X | A hash of thetrigger definition. If changes are
detected to the values that affect atrigger
definition, then the trigger will be regenerated.
COLUMN_NAMES LONGVARCHAR X | The column names defined on the table. The
column names are stored in comma-separated
values (CSV) format.
PK_COLUMN_NAMES LONGVARCHAR X | The primary key column names defined on the

table. The column names are stored in
comma-separated values (CSV) format.

Symmetric DSv2.0

73

Data Model

Name Type/ Size Default PK | not Description
FK null
LAST_TRIGGER_BUILD_REASONCHAR (1) X | Thefollowing reasons for a change are
possible: New trigger that has not been created
before (N); Schema changes in the table were
detected (S); Configuration changesin Trigger
(C); Trigger was missing (T).
CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.
INACTIVE_TIME TIMESTAMP The date and time when atrigger was
inactivated.

The captured data change that occurred to arow in the database. Entries in data are created by database

triggers.

Table A.17. DATA

Name Type/ Size Default PK | not
FK null

Description

DATA_ID INTEGER PK X

TABLE_NAME VARCHAR X
(50)

EVENT_TYPE CHAR (1) X

ROW_DATA LONGVARCHAR

PK_DATA LONGVARCHAR

OLD_DATA LONGVARCHAR

Unique identifier for adata.

The name of the table in which a change
occurred that this entry records.

The type of event captured by this entry. For
triggers, this is the change that occurred, which
is'l' for insert, 'U' for update, or ‘D' for delete.
Other eventsinclude: 'R’ for reloading the entire
table (or subset of the table€) to the node; 'S for
running dynamic SQL at the node, whichis
used for adhoc administration.

The captured data change from the
synchronized table. The column values are
stored in comma-separated values (CSV)
format.

The primary key values of the captured data
change from the synchronized table. This data
is captured for updates and deletes. The primary
key values are stored in comma-separated
values (CSV) format.

The captured data values prior to the update.
The column values are stored in CSV format.

TRIGGER_HIST_ID INTEGER X

CHANNEL_ID VARCHAR
(20)

The foreign key to the trigger_hist entry that
contains the primary key and column names for
the table being synchronized.

The channel that this data belongs to, such as
'prices

Symmetric DSv2.0

74

Data Model

Name Type/ Size Default PK | not Description
FK | null
TRANSACTION_ID VARCHAR An optional transaction identifier that links
(255) multiple data changes together as the same
transaction.
SOURCE_NODE_ID VARCHAR If this data was capture
(50)
EXTERNAL_DATA VARCHAR A field that can be populated by atrigger that
(50) uses the EXTERNAL_SELECT
CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.18. DATA_REF

Used only when routing.data.reader.type is set to 'ref.’ Table that tracks the last known data id that has
been processed. Thistableis used so that joinsto find unprocessed data can be better optimized.

Table A.18. DATA_REF

Name

REF_DATA_ID

REF_TIME

A.19. DATA_GAP

Type/ Size Default

INTEGER

TIMESTAMP

PK
FK

PK

not
null

X

Description

The data_id that can be used to limit the search
of the data table to rows that are greater than
this data_id value.

Thetime when theref _data id was recorded. It
is used as the base time to cal culate timeouts
for gapsin the data _ids.

Used only when routing.data.reader.type is set to 'gap.’ Table that tracks gaps in the data table so that they
may be processed efficiently, if data shows up. Gaps can show up in the datatable if a database

transaction is rolled back.

Table A.19. DATA_GAP

Name

START_ID

END_ID

Type/ Size Default

INTEGER

INTEGER

PK
FK

PK

PK

not
null

X

Description

Thefirst missing data_id from the data table
where agap is detected. This could be the last
data id inserted plus one.

Thelast missing data id from the data table
where agap is detected. If the start_id isthe last
data id inserted plus one, then thisfield isfilled

Symmetric DSv2.0

75

Data Model

Name Type/ Size Default PK | not Description
FK | null
inwith a-1.
STATUS CHAR (2) GP, SK, or FL. GP meansthere is a detected

gap. FL means that the gap has been filled. SK
means that the gap has been skipped either
because the gap expired or because no database
transaction was detected which means that no
datawill be committed to fill in the gap.

CREATE_TIME TIMESTAMP X | Timestamp when this entry was created.
LAST UPDATE HOSTNAME VARCHAR The host who last updated this entry.
(255)
LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.20. DATA_EVENT

Represents routing of a data row to one or more nodes. Entriesin data_event are created by database
triggers.

Table A.20. DATA_EVENT

Name Type/ Size Default PK | not Description
FK null
DATA_ID INTEGER PK ' X | Idof thedatato be routed.
BATCH_ID INTEGER -1 PK X | Thenode id of the node that isto receive the
data
ROUTER _ID VARCHAR PK X | Therouter_id of the router that routed this
(50) data_event.
CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.21. OUTGOING_BATCH

Used for tracking the sending a collection of datato a node in the system. A new outgoing_batch is
created and given astatus of 'NE'. After sending the outgoing_batch to its target node, the status becomes
'SE'. The node responds with either a success status of 'OK' or an error status of 'ER'. An error while
sending to the node also resultsin an error status of 'ER' regardless of whether the node sends that
acknowledgement.

Table A.21. OUTGOING_BATCH

Symmetric DSv2.0 76

Data Model

Name Type/ Size Default PK | not Description
FK | null
BATCH_ID INTEGER PK ' X | Auniqueid for the batch.
NODE_ID VARCHAR The node that this batch is targeted at.
(50)
CHANNEL _ID VARCHAR The channel that this batch is part of.
(20)

STATUS CHAR (2) The current status of the Batch can be newly
created (NE), sent to a Node (SE),
acknowledged as successful (OK), and error
(ER).

LOAD_FLAG INTEGER (1) O A flag that indicates that this batch is part of an
initial load.

ERROR _FLAG INTEGER (1) O A flag that indicates that this batch wasin error
during the last synchornization attempt.

BYTE_COUNT INTEGER 0 X | The number of bytesthat were sent as part of
this batch.

EXTRACT_COUNT INTEGER 0 X | The number of times this an attempt to extract
this batch occurred.

SENT_COUNT INTEGER 0 X The number of times this batch was sent. A
batch can be sent multipletimesif an ACK is
not received.

LOAD_COUNT INTEGER 0 X The number of times an attempt to load this
batch occurred.

DATA_EVENT_COUNT INTEGER 0 X The number of data_eventsthat are part of this
batch.

RELOAD_EVENT_COUNT INTEGER 0 X | The number of reload events that are part of
this batch.

INSERT_EVENT_COUNT INTEGER 0 X The number of insert eventsthat are part of this
batch.

UPDATE_EVENT_COUNT INTEGER 0 X | The number of update events that are part of
this batch.

DELETE EVENT_COUNT INTEGER 0 X | The number of delete eventsthat are part of this
batch.

OTHER_EVENT_COUNT INTEGER 0 X | The number of other event types that are part of
this batch. Thisincludes any events types that
are not areload, insert, update or delete event
type.

ROUTER_MILLIS INTEGER 0 X | The number of milliseconds spent creating this
batch.

NETWORK_MILLIS INTEGER 0 X The number of milliseconds spent transfering
this batch across the network.

FILTER_MILLIS INTEGER 0 X | The number of milliseconds spent in filters
processing data.

LOAD_MILLIS INTEGER 0 X | The number of milliseconds spent loading the

Symmetric DSv2.0

77

Data Model

Name Type/ Size Default PK | not Description
FK | null
datainto the target database.
EXTRACT_MILLIS INTEGER 0 X | The number of milliseconds spent extracting
the data out of the source database.
SQL_STATE VARCHAR For a status of error (ER), thisisthe XOPEN or
(10) SQL 99 SQL State.
SQL_CODE INTEGER 0 X | For astatus of error (ER), thisisthe error code
from the database that is specific to the vendor.
SQL_MESSAGE LONGVARCHAR For a status of error (ER), thisisthe error
message that describes the error.
FAILED_DATA_ID INTEGER 0 X | For astatus of error (ER), thisisthedata id
that was being processed when the batch failed.
LAST_UPDATE _HOSTNAME VARCHAR The host name of the process that last did work
(255) on this batch.
LAST UPDATE TIME TIMESTAMP Timestamp when a process last updated this
entry.
CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.22. INCOMING_BATCH

The incoming_batch is used for tracking the status of loading an outgoing_batch from another node. Data
is loaded and commited at the batch level. The status of the incoming_batch is either successful (OK) or

error (ER).

Table A.22. INCOMING_BATCH

Name Type/ Size Default PK | not Description
FK null
BATCH_ID INTEGER PK | X | Theid of the outgoing_batch that is being
(50) loaded.
NODE_ID VARCHAR PK X | Thenode id of the source of the batch being
(50) loaded.
CHANNEL _ID VARCHAR The channel_id of the batch being loaded.
(20)
STATUS CHAR (2 The current status of the Batch can be
successfully loaded (OK) or error (ER).
NETWORK_MILLIS INTEGER 0 X The number of milliseconds spent transfering
this batch across the network.
FILTER_MILLIS INTEGER 0 X | The number of milliseconds spent in filters
processing data.
DATABASE MILLIS INTEGER 0 X | The number of milliseconds spent loading the

datainto the target database.

Symmetric DSv2.0

78

Data Model

Name Type/ Size Default PK | not Description
FK | null

FAILED_ROW_NUMBER INTEGER 0 X For astatus of error (ER), thisisthe data id
that was being processed when the batch failed.

BYTE _COUNT INTEGER 0 X | The number of bytes that were sent as part of
this batch.

STATEMENT_COUNT INTEGER 0 X The number of statements run to load this
batch.

FALLBACK INSERT_COUNT INTEGER 0 X | The number of times an update was turned into
an insert because the data was not already in the
target database.

FALLBACK_UPDATE_COUNT INTEGER 0 X | The number of times an insert was turned into
an update because a data row already existed in
the target database.

MISSING DELETE_COUNT INTEGER 0 X | THe number of times adelete did not effect the
database because the row was already deleted.

SKIP_COUNT INTEGER 0 X The number of times a batch was sent and
skipped because it had already been loaded
according to incoming_batch

SQL_STATE VARCHAR For a status of error (ER), thisisthe XOPEN or

(10) SQL 99 SQL State.

SQL_CODE INTEGER 0 X | For astatus of error (ER), thisisthe error code
from the database that is specific to the vendor.

SQL_MESSAGE LONGVARCHAR For a status of error (ER), thisisthe error
message that describes the error.

LAST UPDATE HOSTNAME VARCHAR The host name of the process that last did work

(255) on this batch.

LAST_UPDATE _TIME TIMESTAMP Timestamp when a process last updated this
entry.

CREATE_TIME TIMESTAMP Timestamp when this entry was created.

Contains semaphores that are set when processes run, so that only one server can run a process at atime.
Enable this feature by using the cluster.lock.during.xxxx parameters.

Table A.23. LOCK

Name

LOCK_ID

LOCK_ACTION

Type/ Size Default

VARCHAR
(50)

VARCHAR

PK
FK

PK

PK

not
null

X

X

Description

Anid for the process that is running. Many
times thiswill be avalue of ‘common.' It can
also be a specfic node_id.

The process that needs alock.

Symmetric DSv2.0

79

Data Model

Name Type/ Size Default PK | not Description
FK | null
(50)
LOCKING_SERVER_ID VARCHAR The name of the server that currently hasa
(255) lock. Thisistypically ahost name, but it can be
overridden using the
-Druntime.symmetric.cluster.server.id=name
System property.
LOCK_TIME TIMESTAMP Thetime alock is aguired. Use the

cluster.lock.timeout.ms to specify alock
timeout period.

Symmetric DSv2.0

80

Appendix B. Parameters

There are two kinds of parameters that can be used to configure the behavior of SymmetricDS: Sartup
Parameters and Runtime Parameters. Startup Parameters are required to be in a system property or a
property file, while Runtime Parameters can also be found in the Parameter table from the database.
Parameters are re-queried from their source at a configured interval and can also be refreshed on demand
by using the IMX API. The following table shows the source of parameters and the hierarchy of
precedence.

Table B.1. Parameter L ocations

L ocation Required Description

symmetric-default.properties Y Packaged inside symmetric-ds.jar file. Thisfile has al the default
settings along with descriptions.

symmetric.properties N Provided by the end user on the classpath. The first
symmetric.properties found on the classpath will be used.

symmetric.properties N Provided by the end user in the current system user's user.home
directory.

named propertiesfile 1 N Provided by the end user as a Java system property (i.e.

-Dsymmetric.override.properties.file.1=file://my.properties) or in the
constructor of a symmet ri cEngi ne .

named propertiesfile 2 N Provided by the end user as a Java system property (i.e.
-Dsymmetric.override.properties.file.2=classpath://my.properties) or
in the constructor of a symetri cEngi ne .

Java System Properties N Any SymmetricDS property can be passed in asa-D property to the
runtime. It will take precedence over any propertiesfile property.

Parameter table N A table which contains SymmetricDS parameters. Parameters can be
targeted at a specific node group and even at a specific external id.
These settings will take precedence over al of the above.

| Parameter Filter N An extension point which allows parameters to be sourced from
another location or customized. These settings will take precedence
over al of the above.

B.1. Startup Parameters

Startup parameters are read once from properties files and apply only during start up. The following
properties are used:

db.jndi.name

The name of the database connection pool to use, which isregistered in the INDI directory tree of the
application server. It isrecommended that this DataSource is NOT transactional, because
SymmetricDS will handle its own transactions. If NOT using a JNDI connection pool, you must
provide information about the database connection using the db. dri ver , db. url , db. user , and

db. passwor d properties instead, which will create a pool of connections using the db. pool properties.

Symmetric DSv2.0 81

Parameters

[Default:]

db.driver
The class nhame of the IDBC driver. If db. j ndi . nare iS Set, this property is ignored.
[Default: com.mysqgl.jdbc.Driver |

db.url
The JDBC URL used to connect to the database. If db. j ndi . nane is Set, this property isignored.
[Default: jdbc:mysgl://localhost/symmetric |

db.user

The database username, which is used to login, create, and update SymmetricDS tables. To use an
encrypted username, see Section 5.5, Encrypted Passwords (p. 46) . If db. j ndi . nane iS S&t, this
property isignored. [Default: symmetric]

db.password
The password for the database user. To use an encrypted password, see Section 5.5, Encrypted
Passwords (p. 46) . If db. j ndi . nare iS S&t, this property isignored. [Default: |

db.pool.initial.size
Theinitial size of the connection pool. If db. j ndi . nane iS Set, this property isignored. [Default: 5]

db.pool.max.active
The maximum number of connections that will be allocated in the pool. If db. j ndi . nane is set, this
property isignored. [Default: 10]

db.pool.max.wait.millis
Thisis how long arequest for a connection from the datasource will wait before giving up. If
db. j ndi . nane IS Set, this property isignored. [Default: 30000 |

db.pool.min.evictable.idle.millis
Thisis how long a connection can be idle before it will be evicted. If db. j ndi . nane is Set, this property
isignored. [Default: 120000]

db.spring.bean.name

The name of a Spring bean to use as the DataSource. If you want to use a different DataSource other
than the provided DBCP version that SymmetricDS uses out of the box, you may set this to be the
Spring bean name of your DataSource.

db.sgl.query.timeout.seconds
The timeout in seconds for queries running on the database. [Default: 300]

db.tx.timeout.seconds
Thisis how long the default transaction time is. This needs to be fairly big to account for large data
loads. [Default: 7200]

db.jdbc.streaming.results.fetch.size
Thisisthe default fetch size for streaming result sets into memory from the database.
[Default: 1000]

db.default.schema

Symmetric DSv2.0 82

Parameters

Thisisthe schemathat will be used for metadata lookup. Some dialect automatically figure this out
using database specific SQL to get the current schema. [Default:]

db.metadata.ignor e.case
Indicates that case should be ignored when looking up references to tables using the metadata api.
[Default: true]

auto.config.database
If thisistrue, the configuration and runtime tables used by SymmetricDS are automatically created
during startup. [Default: true]

auto.upgrade
If thisistrue, when symmetric starts up it will try to upgrade tables to latest version. [Default: true]

auto.sync.configuration
If thisistrue, create triggers for the SymmetricDS configuration table that will synchronize changes
to node groups that pull from the node where this property is set. [Default: true |

https.allow.self.signed.certs
If thisistrue, a Symmetric client node to accept self signed certificates. [Default: true]

http.basic.auth.username
If specified, a Symmetric client node will use basic authentication when communicating with its
server node using the given user name. [Default: |

http.basic.auth.password
If specified, the password used for basic authentication. [Default: |

embedded.webser ver .basic.auth.username

If specified, the username for basic authentication for an embedded server or standalone server node.
Specifying the username and password is all that's needed to enable basic authentication for an
embedded server or standalone server node. [Default:]

embedded.webser ver .basic.auth.password
If specified, the password for basic authentication for an embedded server or standalone server node.
[Default:]

https.verified.server .names

A list of comma separated server names that will always verify when using https. Thisis useful if the
URL's hostname and the server's identification hostname don't match exactly using the default rules
for the JRE. A special value of "al" may be specified to allow all hostnames to verify. [Default: |

sync.table.prefix
When symmetric tables are created and accessed, thisis the prefix to use for the table name.
[Default: sym |

engine.name
Thisisthe engine name. This should be set if you have more than one engine running in the same
JVM. It isused to name the IMX management bean. [Default: Default |

start.push.job

Symmetric DSv2.0 83

Parameters

Whether the push job is enabled for this node. [Default: true]

start.pull.job
Whether the pull job is enabled for this node. [Default: true |

start.purge.job
Whether the purge job is enabled for this node. [Default: true]

start.synctriggers.job
Whether the sync triggersjob is enabled for this node. [Default: true]

start.heartbeat.job
Whether the heartbeat job is enabled for this node. The heartbeat job simply inserts an event to update
the heartbeat_time column on the node table for the current node. [Default: true |

start.watchdog.job

Whether the watchdog job is enabled for this node. The watchdog job monitors child nodes to detect
if they are offline. Refer to Section 6.15, | OfflineServerListener (p. 56) for more information.

[Default: true]

job.purge.period.timems
Thisis how often the purge job will be run. [Default: 600000]

job.statflush.period.time.ms
Thisis how often accumulated statistics will be flushed out to the database from memory.
[Default: 600000]

web.base.servlet.path
The base servlet path for when embedding SymmetricDS with in another web application.
[Default: |

B.2. Runtime Parameters

Runtime parameters are read periodically from properties files or the database. The following properties
are used:

auto.registration
If thisistrue, registration is opened automatically for nodes requesting it. [Default: false]

auto.reload
If thisistrue, areload isautomatically sent to nodes when they register. [Default: false]

auto.update.node.values.from.properties
Update the node row in the database from the local properties during a heartbeat operation.
[Default: true]

http.download.rate.kb
Thisisthe download rate for the HTTP symmetric transport. A value of -1 means full throttle.
[Default: -1]

Symmetric DSv2.0 84

Parameters

http.concurrent.workers.max

Thisisthe number of HTTP concurrent push/pull requests symmetric will accept. Thisis controlled
by the NodeConcurrencyFilter. The maximum number of database connectionsin the database pool
should be set to twice this number.[Default: 20]

offline.node.detection.period.minutes
Thisisthe minimum number of minutes that a child node has been offline before taking action. Refer
to Section 6.15, 10fflineServerListener (p. 56) for more information. [Default: 120]

outgoing.batches.peek.ahead.window.after .max.size

Thisisthe maximum number of eventsthat will be peeked at to look for additional transaction rows
after the max batch size is reached. The more concurrency in your db and the longer the transaction
takes the bigger this value might have to be. [Default: 100 |

incoming.batches.skip.duplicates

Whether or not to skip duplicate batches that are received. A duplicate batch isidentified by the batch
ID aready existing in the incoming batch table. If this happens, it means an acknowledgement was
lost due to failure or thereis abug. Accepting a duplicate batch in this case can mean overwriting data
with old data. Another cause of duplicatesis when the batch sequence number is reset, which might
happen in alab environement. Skipping a duplicate batch in this case would prevent data changes
from loading. Generally, in a production envionment, this setting should be true. [Default: true |

num.of.ack.retries
Thisisthe number of timeswe will attempt to send an ACK back to the remote node when pulling
and loading data. [Default: 5]

time.between.ack.retriesms
Thisisthe amount of time to wait between trying to send an ACK back to the remote node when
pulling and loading data. [Default: 5000]

dataextractor.enabled
Enable or disable all data extraction at anode for al channels other than the config channel.
[Default: true]

dataloader .enabled
Enable or disable all dataloading at a node for all channels other than the config channel.
[Default: true]

dataloader .enable.fallback.update
If aninsert isreceived, but the row already exists, then try an update instead. [Default: true]

dataloader .enable.fallback.insert
If an update is received, but it affects no rows, then try to insert instead. [Default: true |

dataloader.allow.missing.delete
If adeleteisreceived, but it affects no rows, then continue. [Default: true |

cluster.server.id
Set thisif you want to give your server a unique name to be used to identify which server did what
action. Typically useful when running in a clustered environment. Thisis currently used by the

Symmetric DSv2.0 85

Parameters

ClusterService when locking for anode. [Default: |

cluster.lock.timeout.ms
Time limit of lock beforeit is considered abandoned and can be broken. [Default: 1800000 |

cluster.lock.enabled
[Default: false]

initial.load.delete.fir st
Set thisif tables should be purged prior to aninitial load. [Default: false]

initial.load.cr eate.fir st
Set thisif tables (and their indexes) should be created prior to aninitial load. [Default: false]

http.timeout.ms
Sets both the connection and read timeout on the internal HttpUrlConnection. [Default: 600000s]

http.compression

Whether or not to use compression over HTTP connections. Currently, this setting only affects the
push connection of the source node. Compression on apull is enabled using afilter in the web.xml for
the PullServlet. [Default: true |

web.compression.disabled
Disable compression from occurring on Servlet communication. This property only affects the
outbound HTTP traffic streamed by the PullServlet and PushServlet. [Default: false]

compression.level

Set the compression level this node will use when compressing synchronization payloads. Valid
valuesinclude: NO_COMPRESSION =0, BEST_SPEED =1, BEST_COMPRESSION =9,
DEFAULT_COMPRESSION = -1[Default: -1]

compression.strategy
Set the compression strategy this node will use when compressing synchronization payloads. Valid
valuesinclude: FILTERED =1, HUFFMAN_ONLY =2, DEFAULT_STRATEGY =0[Default: 0]

stream.to.file.enabled

Save datato the file system before transporting it to the client or loading it to the database if the
number of bytesis past a certain threshold. This allows for better compression and better use of
database and network resources. Statistics in the batch tables will be more accurate if thisis set to true
because each timed operation is independent of the others. [Default: true |

stream.to.file.threshold.bytes

If stream.to.file.enabled is true, then the threshold number of bytes at which afile will be written is
controlled by this property. Note that for a synchronization the entire payload of the synchronization
will be buffered in memory up to this number (at which point it will be written and continue to stream
to disk) [Default: 32767 |

job.random.max.start.time.ms
When starting jobs, symmetric attempts to randomize the start time to spread out load. Thisisthe
maximum wait period before starting ajob. [Default: 10000]

Symmetric DSv2.0 86

Parameters

purge.retention.minutes
Thisisthe retention for how long synchronization data will be kept in the SymmetricDS
synchronization tables. Note that datawill be purged only if the purge job is enabled. [Default: 7200 |

statistic.retention.minutes
Thisisthe retention for how long statistic data will be kept in the SymmetricDS staistic table. Note
that data will be purged only if the purge job is enabled. [Default: 7200]

job.route.period.time.ms
Thisis how often the route job will be run. [Default: 10000]

job.push.period.timems
Thisis how often the push job will be run. [Default: 60000]

job.pull.period.time.ms
Thisis how often the pull job will be run. [Default: 60000]

job.synctrigger s.after midnight.minutes
If scheduled, the sync triggers job will run nightly. Thisis how long after midnight that job will run.
[Default: 15]

schema.version

Thisishook to give the user a mechanism to indicate the schema version that is being synchronized.
This property isonly valid if you use the default | RuntimeConfiguration implementation.

[Default: ?]

registration.url
The URL where this node can connect for registration to receive its configuration. This property is
only valid if you use the default |RuntimeConfiguration implementation. [Default: |

sync.url
The URL where this node can be contacting for synchronization.
[Default: http://localhost:8080/sync]

group.id
The node group id for this node. [Default: default |

external.id

The secondary identifier for this node that has meaning to the system where it is deployed. While the
node id is a generated sequence number, the external ID could have meaning in the user's domain,
such as aretail store number. [Default: |

transport.type
Specify the transport type. Supported values currently include: http, internal. [Default: http |

hsgldb.initialize.db
If using the HsglDbDialect, this property indicates whether Symmetric should setup the embedded
database properties or if an external application will be doing so. [Default: true]

Symmetric DSv2.0 87

Appendix C. Database Notes

Each database management system has its own characteristics that results in feature coverage in
SymmetricDS. The following table shows which features are available by database.

Table C.1. Support by Database

Database Versions Transaction | Fallback Conditional UpdateLoop BLOB Sync
supported Identifier Update Sync Prevention

Oracle 8.1.7 and above Y Y Y Y

MySQL 5.0.2 and above Y Y Y Y Y
PostgreSQL 8.2.5 and above Y (8.3and Y Y Y Y

above only)

SQL Server 2005 Y Y Y Y Y
HSQLDB 18 Y Y Y Y Y
HSQLDB 2.0 N Y Y Y Y
H2 1x Y Y Y Y Y
Apache Derby 10.3.21 Y Y Y Y Y
IBM DB2 9.5 N Y Y Y Y
Firebird 20 Y Y Y Y Y
Informix 11 N Y Y Y N
C.1. Oracle

On Oracle Real Application Clusters (RAC), sequences should be ordered so datais processed in the
correct order. To offset the performance cost of ordering, the sequences should also be cached.

alter
al ter
al ter
alter

sequence
sequence
sequence
sequence

SEQ SYM DATA DATA | D cache 1000 order;
SEQ SYM QUTGO N BATCH BATCH I D cache 1000 order;
SEQ SYM TRI GGER RI GGER HI ST | D cache 1000 order;
SEQ SYM TRI GGER _TRI GGER I D cache 1000 order;

While BLOBSs are supported on Oracle, the LONG data typeis not. LONG columns cannot be accessed
from triggers.

Note that while Oracle supports multiple triggers of the same type to be defined, the order in which the

triggers occur appears to be arbitrary.

The SymmetricDS user generally needs privileges for connecting and creating tables (including indexes),

Symmetric DSv2.0

88

Database Notes

triggers, sequences, and procedures (including packages and functions). The following is an example of
the needed grant statements:

GRANT CONNECT TO SYMVETRI C,

GRANT RESOURCE TO SYMMVETRI C;

GRANT CREATE ANY TRI GGER TO SYMVETRI C,
GRANT EXECUTE ON UTL_RAW TO SYMVETRI C,

Partitioning the DATA table by channel can help insert, routing and extraction performance on
concurrent, high throughput systems. TRIGGERS should be organized to put data that is expected to be
inserted concurrently on separate CHANNELSs. The following is an example of partitioning. Note that
both the table and the index should be partitioned. The default value alows for more channels to be added
without having to modify the partitions.

CREATE TABLE SYM DATA
(
data_id | NTEGER NOT NULL ,
tabl e_nane VARCHAR2(50) NOT NULL,
event _type CHAR(1) NOT NULL,
row data CLOB,
pk_data CLOB,
ol d_data CLOB,
trigger _hist_id I NTEGER NOT NULL,
channel _i d VARCHAR2(20),
transaction_id VARCHAR2(1000),
source_node_i d VARCHAR2(50),
ext ernal _data VARCHAR2(50),
create tinme TI MESTAMWP
) PARTITION BY LI ST (channel _id) (
PARTI TI ON P_CONFI G VALUES (' config'),
PARTI TI ON P_CHANNEL_ONE VALUES (' channel _one'),
PARTI TI ON P_CHANNEL_TWO VALUES (' channel _two'),

PARTI TI ON P_CHANNEL_N VALUES (' channel n'),
PARTI TI ON P_DEFAULT VALUES (DEFAULT)):

CREATE UNI QUE | NDEX | DX_D_CHANNEL_| D ON SYM DATA (DATA I D, CHANNEL_ID) LOCAL
(

PARTI TI ON | _CONFI G
PARTI TI ON | _CHANNEL ONE,
PARTI TI ON | _CHANNEL_TWO,
PARTI TI ON | _CHANNEL_N,
PARTI TI ON | _DEFAULT

)

Symmetric DSv2.0 89

Database Notes

MySQL supports severa storage engines for different table types. SymmetricDS requires a storage engine
that handles transaction-safe tables. The recommended storage engine is InnoDB, which isincluded by
default in MySQL 5.0 distributions. Either select the InnoDB engine during installation or modify your
server configuration. To make InnoDB the default storage engine, modify your MySQL server
configuration file (ny. i ni on Windows, ny. cnf on Unix):

def aul t - st orage_engi ne = i nnodb
Alternatively, you can convert tables to the InnoDB storage engine with the following command:

alter table t engi ne = i nnodb;

On MySQL 5.0, the SymmetricDS user needs the SUPER privilege in order to create triggers.
grant super on *.* to symetric;

On MySQL 5.1, the SymmetricDS user needs the TRIGGER and CREATE ROUTINE privilegesin order
to create triggers and functions.

grant trigger on *.* to synmetric;

grant create routine on *.* to synmetric;

C.3. PostgreSQL

Starting with PostgreSQL 8.3, SymmetricDS supports the transaction identifier. Binary Large Object
(BLOB) replication is supported for both byte array (BY TEA) and object ID (OID) data types.

In order to function properly, SymmetricDS needs to use session variables. On PostgreSQL, session
variables are enabled using a custom variable class. Add the following line to the post gr esql . conf file of
PostgreSQL server:

custom vari abl e classes = 'symetric'

This setting is required, and SymmetricDS will log an error and exit if it is not present.

Before database triggers can be created by in PostgreSQL, the plpgsgl language handler must be installed
on the database. The following statements should be run by the administrator on the database:

CREATE FUNCTI ON pl pgsqgl _cal |l _handl er () RETURNS | anguage_handl er AS
"$libdir/plpgsql’ LANGUAGE C

CREATE FUNCTI ON pl pgsqgl _val i dator(oi d) RETURNS void AS
"$libdir/plpgsgl’ LANGUAGE C;

Symmetric DSv2.0 90

Database Notes

CREATE TRUSTED PROCEDURAL LANGUAGE pl pgsql
HANDLER pl pgsql _cal | _handl er
VALI DATOR pl pgsql _val i dat or;

C.4. MS SQL Server

SQL Server was tested using the [TDS JDBC driver.

C.5. HSQLDB

HSQL DB was implemented with the intention that the database be run embedded in the same JVM
process as SymmetricDS. Instead of dynamically generating static SQL-based triggers like the other
databases, HSQL DB triggers are Java classes that re-use existing SymmetricDS servicesto read the
configuration and insert data events accordingly.

The transaction identifier support is based on SQL events that happen in a'window' of time. The
trigger(s) track when the last trigger fired. If atrigger fired within X milliseconds of the previous firing,
then the current event gets the same transaction identifier asthe last. If the time window has passed, then
anew transaction identifier is generated.

C.6. H2

The H2 database allows only Java-based triggers. Therefore the H2 dialect requires that the SymmetricDS
jar file be in the database's classpath.

C.7. Apache Derby

The Derby database can be run as an embedded database that is accessed by an application or a
standalone server that can be accessed from the network. This dialect implementation creates database
triggers that make method calls into Java classes. This means that the supporting JAR filesneed to bein
the classpath when running Derby as a standal one database, which includes symmetric-ds.jar and
commons-lang.jar.

C.8.1BM DB2

The DB2 Dialect uses global variables to enable and disable node and trigger synchronization. These
variables are created automatically during the first startup. The DB2 JDBC driver should be placed in the
"lib" folder.

Currently, the DB2 Diaect for SymmetricDS does not provide support for transactional synchronization.
Large objects (LOB) are supported, but are limited to 16,336 bytesin size. The current featuresin the

Symmetric DSv2.0 91

http://jtds.sourceforge.net/

Database Notes

DB2 Dialect have been tested using DB2 9.5 on Linux and Windows operating systems.

Thereis currently a bug with the retrieval of auto increment columns with the DB2 9.5 JDBC drivers that
causes some of the SymmetricDS configuration tables to be rebuilt when auto.config.database=true. The
DB2 9.7 IDBC drivers seem to have fixed the issue. They may be used with the 9.5 database.

A system temporary tablespace with too small of a page size may cause the following trigger build errors:

SQ.1424N Too many references to transition variables and transition table
columms or the row length for these references is too | ong. Reason
code="2". LINE NUMBER=1. SQ.STATE=54040

Simply create a system temporary tablespace that has a bigger page size. A page size of 8k will probably
suffice.

C.9. Firebird

The Firebird Diaect requires the installation of a User Defined Function (UDF) library in order to
provide functionality needed by the database triggers. SymmetricDS includes the required UDF library,
called SYM_UDF, in both source form (as a C program) and as pre-compiled libraries for both Windows
and Linux. The SYM_UDF library is copied into the UDF folder within the Firebird installation
directory.

For Linux users:

cp databases/firebird/sym_udf.so /opt/firebird/UDF

For Windows users:

copy databases\firebird\sym_udf.dll C:\Program Files\Firebird\Firebird 2 O\UDF

The Jaybird JDBC driver was used during testing, but the user must download the driver and placeit in
the SymmetricDS "lib" folder.

The following limitations currently exist for this dialect:

» The outgoing batch does not honor the channel size, and all outstanding data events are included in
abatch.

» Syncing of Binary Large Object (BLOB) islimited to 16K bytes per column.

» Syncing of character datais limited to 32K bytes per column.

C.10. Informix

The Informix Dialect was tested against Informix Dynamic Server 11.50, but older versions may also
work. Y ou need to download the Informix JDBC Driver (from the IBM Download Site) and put the

Symmetric DSv2.0 92

http://www.firebirdsql.org/index.php?op=devel&sub=jdbc
http://www-01.ibm.com/software/data/informix/downloads.html

Database Notes

i fxjdbc.jar andifxlang.jar filesinthe SymmetricDS1ib folder.

Make sure your database has logging enabled, which enables transaction support. Enable logging when
creating the database, like this:

CREATE DATABASE MYDB W TH LOG,

Or enable logging on an existing database, like this:

ondbl og nmydb unbuf | og
ontape -s -L O

The following features are not yet implemented:

» Syncing of Binary and Character Large Objects (LOB) is disabled.

» Thereisno transaction ID recorded on data captured, so it is possible for data to be committed
within different transactions on the target database. If transaction synchronization is required,
either specify a custom transaction ID or configure the synchronization so datais aways sent in a
single batch. A custom transaction ID can be specified with the tx_id_expression on TRIGGER.
The batch size is controlled with the max_batch_size on CHANNEL. The pull and push jobs have
runtime properties to control their interval.

Symmetric DSv2.0 93

Appendix D. Data Format

The SymmetricDS Data Format is used to stream data from one node to another. The dataformat reader
and writer are pluggable with an initial implementation using a format based on Comma Separated
Values (CSV). Each linein the stream is arecord with fields separated by commas. String fields are
surrounded with double quotes. Double quotes and backslashes used in a string field are escaped with a
backslash. Binary values are represented as a string with hex values in "\Oxab" format. The absence of
any valuein the field indicates a null value. Extra spacing isignored and lines starting with a hash are
ignored.

Thefirst field of each line gives the directive for the line. The following directives are used:

nodeid, {node id}
I dentifies which node the datais coming from. Occurs oncein CSV file.

binary, {BASE64|NONE|HEX}
Identifies the type of decoding the loader needs to use to decode binary datain the pay load. This
varies depending on what database is the source of the data.

channel, {channdl_id}
Identifies which channel a batch belongs to. The SymmetricDS data loader expects the channel to be
specified before the batch.

batch, {batch_id}
Uniquely identifies a batch. Used to track whether a batch has been loaded before. A batch of -9999 is
considered avirtual batch and will be loaded, but will not be recorded in incoming_batch.

schema, {schema name}
The name of the schemathat is being targeted.

catalog, {catalog name}
The name of the catalog that is being targeted.

table, {table name}
The name of the table that is being targeted.

keys, {column name...}
Lists the column names that are used as the primary key for the table. Only needs to occur after the
first occurrence of the table.

columns, {column name...}
Lists al the column names (including key columns) of the table. Only needs to occur after the first
occurrence of the table.

insert, {column value...}
Insert into the table with the values that correspond with the columns.

update, {new column value...} {old key value...}
Update the table using the old key values to set the new column values.

Symmetric DSv2.0 9

Data Format

old, {old column value...}
Represent all the old values of the data. This data can be used for conflict resolution.

delete, {old key value...}
Delete from the table using the old key values.

sql, {sgl statement}
Optional notation that instructs the data loader to run the accompanying SQL statement.

bsh, {bsh script}
Optional notation that instructs the data loader to run the accompanying BeanShell snippet.

create, {xml}
Optional notation that instructs the data loader to run the accompanying DdIUtils XML table
definition in order to create a database table.

commit, {batch_id}
An indicator that the batch has been transmitted and the data can be committed to the database.

Example D.1. Data Format Stream

nodei d, 1001

channel, pricing

bi nary, BASE64

bat ch, 100

schenm,

cat al og,

table, itemselling price
keys, price id

columms, price_id, price, cost
insert, 55, 0.65, 0.55

schenmg,

cat al og,

table, item

keys, item.id

columms, itemid, price_id, nane
i nsert, 110000055, 55, "Soft Drink"
del ete, 110000001

schenma,

cat al og,

table, itemselling price
update, 55, 0.75, 0.65, 55
commit, 100

Symmetric DSv2.0

http://www.beanshell.org/
http://db.apache.org/ddlutils/

Appendix E. Version Numbering

The software is released with a version number based on the A pache Portable Runtime Project version
guidelines. In summary, the version is denoted as three integers in the format of
MAJOR.MINOR.PATCH. Mgor versions are incompatible at the API level, and they can include any
kind of change. Minor versions are compatible with older versions at the APl and binary level, and they

can introduce new functions or remove old ones. Patch versions are perfectly compatible, and they are
released to fix defects.

Symmetric DSv2.0 96

http://apr.apache.org/versioning.html

	SymmetricDS 2 User Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. What is SymmetricDS?
	1.2. Background
	1.3. SymmetricDS Features
	1.3.1. Notification Schemes
	1.3.2. Two-Way Table Synchronization
	1.3.3. Data Channels
	1.3.4. Transaction Awareness
	1.3.5. Data Filtering and Rerouting
	1.3.6. HTTP(S) Transport
	1.3.7. Remote Management

	1.4. System Requirements
	1.5. What's new in SymmetricDS 2

	Chapter 2. Hands-on Tutorial
	2.1. Installing SymmetricDS
	2.2. Creating and Populating Your Databases
	2.3. Starting SymmetricDS
	2.4. Registering a Node
	2.5. Sending an Initial Load
	2.6. Pulling Data
	2.7. Pushing Data
	2.8. Verifying Outgoing Batches
	2.9. Verifying Incoming Batches

	Chapter 3. Planning an Implementation
	3.1. Identifying Nodes
	3.2. Organizing Nodes
	3.3. Defining Node Groups
	3.4. Linking Nodes
	3.5. Choosing Data Channels
	3.6. Defining Data Changes to be Captured and Routed
	3.6.1. Defining Triggers
	3.6.2. Defining Routers
	3.6.3. Planning Initial Loads

	3.7. Planning for Registering Nodes

	Chapter 4. Configuration
	4.1. Node Properties
	4.2. Node
	4.3. Node Group
	4.4. Node Group Link
	4.5. Channel
	4.6. Triggers and Routers
	4.6.1. Trigger
	4.6.2. Router
	4.6.2.1. Default Router
	4.6.2.2. Column Match Router
	4.6.2.3. Lookup Table Router
	4.6.2.4. Relational Router
	4.6.2.5. Scripted Router

	4.7. Opening Registration
	4.8. Initial Load
	4.8.1. Dead Triggers

	4.9. Bi-Directional Synchronization
	4.10. Multi-Tiered Synchronization
	4.11. Registration Redirect
	4.12. Jobs
	4.13. Controlling Synchronization
	4.14. Sync Triggers Job
	4.15. JMS Publishing

	Chapter 5. Deployment
	5.1. Deployment Options
	5.1.1. Web Archive
	5.1.2. Standalone
	5.1.3. Embedded

	5.2. Running as a Windows Service
	5.3. Running as a Nix Service
	5.4. Clustering
	5.5. Encrypted Passwords
	5.6. Secure Transport
	5.6.1. Sym Launcher
	5.6.2. Tomcat
	5.6.3. Keystores
	5.6.4. Generating Keys

	5.7. Basic Authentication
	5.8. IP Filtering
	5.8.1. CIDR Filter
	5.8.2. Literal Filter
	5.8.3. Wildcarding
	5.8.4. Range Filters
	5.8.5. Inner workings
	5.8.6. Configuration

	Chapter 6. Extending SymmetricDS
	6.1. IParameterFilter
	6.2. IDataLoaderFilter
	6.3. ITableColumnFilter
	6.4. IBatchListener
	6.5. IAcknowledgeEventListener
	6.6. IReloadListener
	6.7. IExtractorFilter
	6.8. ISyncUrlExtension
	6.9. INodeIdGenerator
	6.10. ITriggerCreationListener
	6.11. IBatchAlgorithm
	6.12. IDataRouter
	6.13. IHeartbeatListener
	6.14. IOfflineClientListener
	6.15. IOfflineServerListener
	6.16. INodePasswordFilter
	6.17. IServletExtension

	Chapter 7. Administration
	7.1. Changing Triggers
	7.2. Changing Configuration
	7.3. Logging Configuration
	7.4. Java Management Extensions
	7.5. Temporary Files
	7.6. Database Purging
	7.7. Debugging Issues
	7.8. Querying for Errors
	7.9. Fixing Errors
	7.10. Measuring Performance

	Appendix A. Data Model
	A.1. NODE
	A.2. NODE_SECURITY
	A.3. NODE_IDENTITY
	A.4. NODE_GROUP
	A.5. NODE_GROUP_LINK
	A.6. NODE_HOST
	A.7. NODE_HOST_CHANNEL_STATS
	A.8. CHANNEL
	A.9. NODE_CHANNEL_CTL
	A.10. NODE_GROUP_CHANNEL_WINDOW
	A.11. TRIGGER
	A.12. ROUTER
	A.13. TRIGGER_ROUTER
	A.14. PARAMETER
	A.15. REGISTRATION_REDIRECT
	A.16. TRIGGER_HIST
	A.17. DATA
	A.18. DATA_REF
	A.19. DATA_GAP
	A.20. DATA_EVENT
	A.21. OUTGOING_BATCH
	A.22. INCOMING_BATCH
	A.23. LOCK

	Appendix B. Parameters
	B.1. Startup Parameters
	B.2. Runtime Parameters

	Appendix C. Database Notes
	C.1. Oracle
	C.2. MySQL
	C.3. PostgreSQL
	C.4. MS SQL Server
	C.5. HSQLDB
	C.6. H2
	C.7. Apache Derby
	C.8. IBM DB2
	C.9. Firebird
	C.10. Informix

	Appendix D. Data Format
	Appendix E. Version Numbering

